
MA 362 — Homework 4 — Due Friday, Feb 8

The first two questions on this homework don’t have much to do with the field extensions.
Instead, the first asks you to fill in some details of a claim I’ve often made in class: if F is a field,
then every ideal in F [x] is generated by a single element. The second will give you some practice
with chains in partially ordered sets as they relate to a property of rings that we’ve seen before.

1. let F be a field and let I ⊆ F [x] be an ideal. Prove that I = (f(x)) for some polynomial
f(x) ∈ F [x] by doing the following:

a. Prove it in the two trivial cases: when I does not contain any nonzero polynomials,
and when I contains a nonzero constant polynomial.

b. Now if I does contain a nonzero polynomial, and contains no constant polynomials,
then let f(x) be a nonzero polynomial in I of smallest degree and prove that I =
(f(x)). You will need the division algorithm for polynomial rings.

2. A commutative ring R is called noetherian if every ideal I in R is finitely generated. Prove
the following two equivalent definitions of this property:

a. R is noetherian if and only if for any chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · there exists
an index N such that IN = IN+1 = IN+2 = · · ·. This characterization is sometimes
called “no infinite ascending chains”.

b. R is noetherian if and only if every nonempty set S of ideals in R has a maximal
element. (in more detail, S is a partially ordered set with respect to ⊆. A maximal
element of S is an ideal J satisfying that if J ⊆ I for some I ∈ S then J = I.)

3. Consider the field extension Q ⊆ E = Q(
√

2), and recall that {1,
√

2} is a Q-basis for E.
This means we can define a Q-linear map from E to itself just by defining the map’s values
on the basis element.

Consider the linear map ψ : E → E defined by ψ(1) = 1 and ψ(
√

2) = −
√

2.

a. Prove directly that ψ is a field isomorphism. (An isomorphism from an object to itself
to called an automorphism).

b. Prove that for any r ∈ Q ⊆ E, ψ(r) = r. We say that ψ fixes the subfield Q.

c. Prove that there are only two automorphisms of E that fix Q, namely the ψ from this
problem and the identity function. Hint: Prove that if ξ is such an isomorphism,
then ξ(1) = 1 and ξ(

√
2) = ±

√
2.

4. The real number α =
√

1 +
√

2 is algebraic over Q. A real number β is called a conjugate
of α if β and α have the same minimal polynomial. Find all conjugates of α.

5. Let F ⊆ E be a field extension, and let G be the set of all automorphisms of E that fix F .
Prove that G is a group under composition. Describe this group when Q ⊆ E is the field
extension from question 3.
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Bonus. Consider the field extension E = Q(
√

2,
√

3), which has Q-basis {1,
√

2,
√

3,
√

6}. Thinking
of E as a vector space, any linear transformation E → E can be written as a 4 × 4
matrix with entries in Q. For example, the linear function σ defined by σ(1) =

√
2 +
√

3,
σ(
√

2) = 1 +
√

6, σ(
√

3) = 2 + 2
√

3, σ(
√

6) = 2
√

2 +
√

3 would be represented by the
matrix:

Mσ =


0 1 2 0
1 0 0 2
1 0 2 1
0 1 0 0

 .
To use this matrix to find out where the element α = a + b

√
2 + c

√
3 + d

√
6 gets sent by

σ, we write our element as a column vector:

cα =


a
b
c
d


and do the matrix multiplication Mσ · cα, then translate the resulting column vector back
into an element of E.

Find the set of all matrices that represent automorphisms of E that fix Q, and find a
generating set for this matrix group.
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