
Math 765 - Computational Commutative Algebra

Nathan Fieldsteel

Spring 2019

Course Description

This will be a course on computational methods in commutative algebra and algebraic geometry, with a
particular focus on the computer algebra system Macaulay2. In addition to developing proficiency with
Macaulay2, we will aim to understand the algorithms which it uses to perform explicit computations with
polynomial rings and related objects. A tentative list of topics includes but is not limited to : Gröbner
bases and their applications, Buchberger’s Algorithm, minimal free resolutions, Betti tables, syzygies,
Stanley-Reisner rings, monomial ideals, and the F4 and F5 families of algorithms. Depending on time and
student interest, we may also discuss other topics at the intersection of mathematics and computation,
such as numerical algebraic geometry using Bertini, or writing and formally verifying mathematical
proofs using Coq.

Prerequisites

No familiarity with programming will be assumed. Familiarity with basic commutative algebra (rings,
ideals, modules) will be helpful. Students should have access to a computer.

Expectations

Optional homework problems will be assigned. Grade will be based on the completion of a computational
project on a topic of the student’s choosing.

References

[1] D. A. Cox, J. Little, and D. O’Shea. Using algebraic geometry, volume 185 of Graduate Texts in
Mathematics. Springer, New York, second edition, 2005.

[2] D. A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts in
Mathematics. Springer, Cham, fourth edition, 2015. An introduction to computational algebraic
geometry and commutative algebra.

[3] D. Eisenbud. The geometry of syzygies, volume 229 of Graduate Texts in Mathematics. Springer-Verlag,
New York, 2005. A second course in commutative algebra and algebraic geometry.

[4] D. Eisenbud, D. R. Grayson, M. Stillman, and B. Sturmfels, editors. Computations in algebraic
geometry with Macaulay 2, volume 8 of Algorithms and Computation in Mathematics. Springer-Verlag,
Berlin, 2002.

[5] H. Schenck. Computational algebraic geometry, volume 58 of London Mathematical Society Student
Texts. Cambridge University Press, Cambridge, 2003.

Contents

1 January 9 - Monomial Orders and Multivariate Polynomial Division
1.1 Getting Started .
1.2 Multivariate Polynomial Division .

2 January 11 – Groebner Bases and Buchberger’s Algorithm
2.1 Groebner Bases .
2.2 Buchberger’s Algorithm .

3 January 14 – An Introduction to Macaulay2
3.1 Sample Macaulay2 Session .

4 January 16 – Introduction to Affine Algebraic Geometry
4.1 Affine Varieties .
4.2 Groebner Bases and Elimination Ideals .

5 January 18 – First Macaulay2 Hands-On Session
5.1 Problem 1 .
5.2 Problem 2 .
5.3 Problem 3 .

6 January 23 - R-modules

7 January 25 - More on Graded Modules, Minimal Free Resolutions, Betti Numbers

8 January 28 - Betti Diagrams, The Koszul Complex for R/m, Proof of Hilbert Syzygy
Theorem

9 January 30 - Projective Geometry, Hilbert Functions

10 February 1 - Worksheet 2

11 February 4
11.1 The Hilbert Function, Series, and Polynomial .

12 February 6 - Algorithms for minimal free resolutions
12.1 More general terms orders: .

13 February 8
13.1 Schreyer Resolutions and Schreyer Frames .

14 February 11 - Example of Computing a Schreyer Frame

15 February 13 - Example of Computing a Schreyer Resolution

16 February 15 - An Algorithm for Computing a Schreyer Resolution

17 February 18

18 February 20 - Worksheet Day

19 February 22 - More on Hilbert Functions, Points in Projective Space
19.1 Geometric Information from the Hilbert Function .

20 February 25 - Points in Projective Space, Regularity, Resolutions, Examples
20.1 Imposed Conditions .

21 February 27 - Some background towards (stating and) proving the theorem

22 March 1 - Worksheet Day - Writing your own Macaulay2 functions.

23 March 4 - Regularity, Depth, and Local Cohomology
23.1 Local Cohomology .

24 March 6

25 March 8

26 March 18
26.1 Completing the Proof from Last Time: .
26.2 Applications of the theorem: .

27 March 20

28 March 22: Loading Packages, Depth in Macaulay2
28.1 Problem 1 .
28.2 Problem 2 .

29 Week of March 25 - 29: Simplicial Complexes Worksheet
29.1 Problem 1 .
29.2 Problem 2 .
29.3 Problem 3 .
29.4 Problem 4 .

30 Week of April 1: Alexander Duality
30.1 Problem 1 .
30.2 Problem 2 .
30.3 Problem 3 .

1 January 9 - Monomial Orders and Multivariate Polynomial Division

1.1 Getting Started

As part of the focus of this class will be on the use of computational software, the first thing you should
do is install and set up Macaulay2, and familiarize yourself with the basics of the system. You can
download Macaulay2 and find installation instuctions at macaulay2.com, under the Downloads link in the
sidebar. While Macaulay2 can be run from a terminal, it is significantly easier and more convenient to
use Macaulay2 in an environment which allows you to both run Macaulay2 commands and also facilitates
the editing and saving of text files. The most sensible choice for such an environment is the Emacs text
editor. Instructions for getting Emacs and configuring it to run Macaulay2 are available at the links listed
above.

If you already have Macaulay2 installed, you should verify that you are using the most up-to-date
version of the software. Macaulay2 will tell you which version you have when you start a new session.
At the time of this writing (January 2019), version 1.13 has just today been released, so if you have an
existing installation you’ll very likely need to upgrade.

http://Macaulay2.com
https://faculty.math.illinois.edu/Macaulay2/Downloads/

1.2 Multivariate Polynomial Division

These first notes are written following the introductory chapter in [1].
Our first goal is to generalize the polynomial division algorithm to polynomial rings with more than

one variable. But first we’ll summarize the one-variable case:
Let k be a field and let I be an ideal in the ring R = k[x]. Because R is a principal ideal domain, the

ideal I is principal, so we can say I = (g(x)) for some g(x) ∈ R. Given an arbitrary polynomial f (x) in R,
we might want to know whether or not f (x) is in I (equivalently, whether f (x) is 0 in R/I). The division
algorithm for k[x] says that there exist unique polynomials q(x) and r(x) in R satisfying

f (x) = q(x)g(x) + r(x)

with deg(r(x)) < deg(g(x)), and these polynomials can be found using the Euclidean algorithm. It is
immediate that the remainder r(x) is 0 if and only if f (x) is in I.

In order to generalize this statement to the ring S = k[x1, . . . , xn], we’ll need a way to order the
monomials in S analogous to the degree comparison in the one-variable case.

Definition 1.1. A monomial ordering on the set of monomials in S is an order relation > satisfying:

i. > is a total ordering. For any monomials xα, xβ, either xα > xβ or xβ > xα.

ii. > is a well-ordering: Every nonempty set of monomials has a minimum with respect to >.

iii. > respects multiplication: for any monomials xα, xβ, xγ, if xα > xβ then xαxγ > xβxγ

Some authors also include the requirement that 1 is the smallest monomial with respect to >, but this
follows from the definition above: If there were a monomial m with with 1 > m, then we could repeatedly
apply (iii) to conclude that 1 > m > m2 > m3 > . . ., forming a nonempty set of monomials with no
minimum, contradicting (ii).

In R = k[x], the only monomial order is the degree ordering . . . > xn+1 > xn > . . . > x2 > x1 > 1. But
in S = k[x1, . . . , xn] there are many. Here are a few examples:

Example 1.1. The lexicographic order of monomials, denoted >lex, is defined by

xα11 xα22 · · · x
αn
n >lex xβ11 xβ22 · · · x

βn
n

if and only if there exist i < n with αj = βj for j < i and αi > βi. Said another way, xα >lex xβ if the
leftmost nonzero entry in the difference of exponent vectors α − β is positive.

Lexicographic order is sometimes described as “alphabetical” or “dictionary” order, but this is only
true if we restrict our attention to monomials with fixed total degree d. In this case, when arranged in
decreasing order by >lex, the monomials will be sorted into “alphabetical” order. But between monomials
of different total degree, this observation is not true. Note that x21 > x1.

Note also that under lexicographic ordering, if the total degree of xα is greater than the total degree of
xβ, this does not imply that xα >lex xβ. For example, in k[a, b, c] we note that the following is a decreasing
sequence of monomials for which the corresponding sequence of total degrees is 2, 6, 5, 11, 1:

x2 > xy5 > y5 > yz10 > z

If we want to fix this, it is easy to use >lex to construct an monomial order that respects total degree:

Example 1.2. The graded lexicographic order, denoted >grlex, is defined by

xα11 xα22 · · · x
αn
n >grlex xβ11 xβ22 · · · x

βn
n

if either the total degree of xα is greater than the total degree of xβ, or their total degrees are equal and
xα >lex xβ. In other words, we first order by total degree, and break ties with the >lex order.

Example 1.3. The graded reverse lexicographic order is defined by

xα11 xα22 · · · x
αn
n >grlex xβ11 xβ22 · · · x

βn
n

if either the total degree of xα is greater than the total degree of xβ, of their total degrees are equal and
the rightmost nonzero entry in the vector α − β is negative.

A heuristic description of this ordering is as follows: First, order the monomials by total degree. Then
within a fixed total degree, order the monomials lexicographically, but with the opposite ordering of the
variables. Finally, reverse the order in each total degree.

So, while the lexicographic ordering of the degree three monomials in the variables x, y, z is

x3 >lex x2y >lex x2z >lex xy2 >lex xyz >lex xz2 >lex y3 >lex y2z >lex yz2 >lex z3

If we had instead lexicographically ordered them using the variable order z > y > x we would end up
with

z3 > z2y > z2x > zy2 > zyx > zx2 > y3 > y2x > yx2 > x3

And reversing this ordering gives us the >grevlex ordering on monomials of degree 3 in x > y > z:

x3 >grevlex x2y >grevlex xy2 >grevlex y3 >grevlex x2z >grevlex xyz >grevlex y2z >grevlex xz2 >grevlex yz2 >grevlex z3

All of the preceeding monomial orders can be thought of as sequentially comparing various linear
functions of the exponent vectors until an inequality is found. For example, >lex checks if α1 = β1,
then checks if α2 = β2, and so on, until one of these equalities fails to hold. Graded lex first checks if∑
αi =

∑
βi, then checks the inequalities for >lex. This framework allows use to make a very general

definition of monomial orders which (it turns out) captures all possible monomial orders.

Example 1.4. Let R = k[x1, . . . , xn] and let M be an m × n matrix with rows r1, . . . , rm. We can attempt
to define a monomial order on R using M by defining xα >M xβ if there exists i 6 m satisfying rj ·α = rj · β
for all 1 6 j < i and ri · α > rj · β.

It’s easy to come up with matrices M so that >M fails to be a monomial order. But it turns out that
every monomial order can be realized as >M for some M. For example, lexicographic order is >M where
M is the n× n identity matrix, and graded lexicographic order is realized by the matrix you get by adding
a row of 1s at the top of the n × n identity matrix.

Monomial orderings are the appropriate generalization of the degree comparison in k[x] to give us a
multivariable version of the division algorithm.

Theorem 1.1. Let R = k[x1, . . . , xn] and let > be a monomial order on R. Let f ∈ R and let (f1, . . . , fd)
be an ordered sequence of elements of R. Then there exists polynomials a1, . . . , ad ∈ R and r ∈ R so that
the equation

f = a1 f1 + . . . ad fd + r

holds, and for each i, either ai fi = 0 or it has leading term smaller than the leading term of f , and r
is a sum of terms none of which is divisible by the leading term of any fi. r is called a remainder of f
after division by f1, . . . , fd.

If the remainder r = 0, then f is in the ideal generated by (f1, . . . , fd), but the converse doesn’t
necessarily hold. We note the failure of the desired “if and only if” statement with the following example,
taken from [5]:

Example 1.5. In the ring R = k[x, y] consider the elements (x2 + y, xy − 1) and suppose we want to know
if x2 − y2 is in the ideal they generate. Using polynomial division it is easy to find the expression

(x2 − y2) = (1)(x2 + y) + (0)(xy + x) + (−y2 − y)

which satisfies the conditions specified in the multivariate polynomial division algorithm. Despite the
remainder being nonzero, we can see that

x2 − y2 = (−y)(x2 + y) + (x)(xy + x)

so it is clearly in the ideal (x2 + y, xy + x), despite the nonzero remainder.

2 January 11 – Groebner Bases and Buchberger’s Algorithm

2.1 Groebner Bases

Last time we saw that the remainder in multivariate polynomial divison 1.1 doesn’t necessarily answer
the question of ideal membership: r = 0 ⇒ f ∈ I but this is not an “if and only if”. The way to fix this
problem is with Groebner Bases, and the way to find Groebner Bases is with Buchberger’s Algorithm

First let’s note the problem with 1.1. The remainder after multivariate polynomial division is a sum
of terms, none of which are divisible by the leading term of any of the fi. Unfortunately, as we saw in
example 1.5, an arbitrary element of the ideal (f1, . . . , fd) may have a leading term which is not divisible
by any leading term of the generating set. But if you could replace the generating set for I by a much
bigger set, one which has leading terms dividing any leading term of any element of I, then this problem
would go away. This motivates the following definition.

Definition 2.1. Let I be an ideal in R = k[x1, . . . , xn] and fix a monomial order > on R. A Groebner basis
for I with respect to > is a set {g1, . . . , gd} ⊆ I with the property that, for any f ∈ I, the leading term of
f is divisible by the leading term of gi for some i.

Such a set, if it exists, will fix the failure of 1.1 to adequately test ideal membership, for the following
reason:

Remark 2.1. Let G = {g1, . . . ,Gd} be a Groebner basis for I, and let f ∈ R. We can do polynomial
division to write

f = a1g1 + . . . , adgd + r.
If f ∈ I, then r ∈ I as well. But then either the leading term of r is divisible by the leading term of

gi for some i, a contradiction, or r = 0. So when we use a Groebner basis for I instead of an arbitrary
generating set, the remainder after division in 1.1 is 0 if and only if the polynomial in question is in I.
Note the natural corollary: If G is a Groebner basis for I, then the ideal generated by G is I.

There are other, equivalent formulations of the definition of Groebner basis:

Definition 2.2. Let > be a monomial order on R = k[x1, . . . , xn], let I be an ideal in R and let G ⊆ I.
The following are equivalent:

i. G is a Groebner basis for I with respect to >, following 2.1.

ii. Let LT>(I) be the ideal generated by the set {LT>(f) | f ∈ I}. Then the set of leading terms of
elements of G generate LT>(I).

iii. For any gi, gj ∈ G, the element:

S(gi, gj) =
LCM(LT>(gi),LT>(gj))

αi LT>(gi)
gi −

lcm(LT>(gi),LT>(gj))

αj LT>(gj)
gj

has remainder zero after division by G. Here αi is the leading coefficient of gi, and similarly for αj .

While i. ⇒ ii. ⇒ iii. is straightforward, iii. ⇒ i. is a more significant undertaking, the details are
spelled out in [2].

2.2 Buchberger’s Algorithm

The polynomial S(gi, gj) used in this definition is called an S-polynomial. The idea here is to take two
elements in I and subtract multiples of them from each other to get a new element of R with a leading
term (probably) not divisible by the leading terms of either of gi or gj . If G is not a Groebner basis for the
ideal it generates, then maybe some S-polynomial of elements in G will have a leading term not divisible
by any element of G. This observation can be used to outline a procedure for starting with an arbitrary
set { f1, . . . , fd} and find a Groebner basis for the ideal generated by this set

Definition 2.3. Buchberger’s Algorithm is the process defined in Pseudocode below.
With input a finite set { f1, . . . , fd} of polynomials, it returns a Groebner basis for the ideal generated

by F.

Algorithm 1 Buchberger’s Algorithm
1: procedure Buchberger’s Algorithm(f1, . . . , fd) . Gives Grobner basis of I = (f1, . . . , fd)
2: F ← { f1, . . . , fd}
3: G← F
4: repeat
5: Gtemp ← G
6: for each pair gi, gj ∈ G do
7: r ← the remainder after dividing S(gi, gj) by G
8: if r , 0 then
9: add r to Gtemp

10: until G = Gtemp

If this loop actually stops, then the resulting set G will satisfy iii. in 2.2, so it will be a Groebner
basis for I. But how do we know this will ever terminate? The idea is to consider the chain of ideals {Ik}
generated by the leading terms of the elements of Gtemp after k iterations of the loop. One can show that
Ik (Ik+1 if and only if the loop did not terminate after iteration k. So this algorithm will fail to terminate
if and only if we have an infinite ascending chain of ideals in R, impossible because R is noetherian.

3 January 14 – An Introduction to Macaulay2

3.1 Sample Macaulay2 Session

The purpose of today’s class is to demonstrate some basic usage of Macaulay2. One thing which I very
much wanted to demonstrate was using Macaulay2 in the EMACS text editor. But because I couldn’t
connect my computer to the projector, I was unable to demonstrate this. Please get Macaulay2 up and
running in EMACS if you haven’t already: it’s a significant upgrade over using the command line only.

When I first launch Macaulay2 I see something like this:

+ M2 --no-readline --print-width 100
Macaulay2, version 1.13
--loading configuration for package "FourTiTwo" from file /Users/nathan/Library/Application Support/Macaulay2/init-FourTiTwo.m2
--loading configuration for package "Topcom" from file /Users/nathan/Library/Application Support/Macaulay2/init-Topcom.m2
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone,
Truncations

i1 :

Significantly, Macaulay2 is telling me that I’m running version 1.13, which is the current version (As
of Jan 2019). The prompt i1 : is waiting for the first line of input from the user. In emacs, we can
type directly into the Macaulay2 buffer as if it were an ordinary command-line session. We can also press
F12 (or whatever key you have configured) while in a file that ends with the .m2 extension to start a
Macaulay2 session in emacs, or to show the current session. You can use F11 from your .m2 file to send
the line containing the cursor to Macaulay2, or to send the current highlighted region to Macaulay2.

Macaulay2 can evaluate basic algebraic expressions:

i1 : 2 + 2

o1 = 4

i2 :

My first input was 2 + 2, the first output was 4 (looks good), and Macaulay2 is now waiting for the
second input.

i2 : 2/3 + 6/11

40
o2 = --

33

o2 : QQ

i3 :

When we ask Macaulay2 to add two fractions, we get two output lines: The first tells use the value of
the input expression, which is 40

33 . The second output line, o2 : QQ, is telling us the type of the output.
In this case, it is a rational number.

Integers and rational numbers are multi-precision by default. We don’t need to worry about overflow
or rounding errors when we ask for 100! or the 100th partial sum of the harmonic series:

i3 : 100!

o3 = 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156
518286253697920827223758251185210916864000000000000000000000000

i4 : sum(toList(1..100) / (i -> (1/i)))

14466636279520351160221518043104131447711
o4 = ---

2788815009188499086581352357412492142272

o4 : QQ

However, real and complex numbers are inaccurate. If we take for example the complex number i and
square it, we’ll get −1: But if we raise it to the fourth power, we get a number which is extremely close
to 1 but not equal to it:

i5 : ii^2

o5 = -1

o5 : CC (of precision 53)

i6 : ii^4

o6 = 1-2.44929359829471e-16*ii

o6 : CC (of precision 53)

This is not typically a big deal, especially since we’ll often work in polyomial rings over finite fields we
shouldn’t expect any issues related to machine precision; but it’s something to be aware of. Instead of just
evaluating an expression, we can evaluate an expression and save the value to a symbol (any acceptable
string):

i7 : val = 20!

o7 = 2432902008176640000

i8 : val^2

o8 = 5919012181389927685417441689600000000

Now for the rest of this Macaulay2 session, we can use val whenever we need 20!. If the output is so
long that you don’t want it to be printed to the screen, you can end your input line with a semicolon ;.

i9 : bigval = 500!;

i10 :

semicolons also allow you to evaluate multiple expressions in a single line:

i10 : a = 2 + 2; b = 6*a; c = a + b;

i13 : a + b + c

o13 = 56

We also have access to the previous three outputs using oo, ooo, and oooo. If you want to go further
back to a particular output, like our 100! from earlier, you can access it using o3.

i14 : length toString o3

o14 = 158

Macaulay2 has plenty of build in rings and fields, for example

i15 : ZZ

o15 = ZZ

o15 : Ring

i16 : ZZ/101

ZZ
o16 = ---

101

o16 : QuotientRing

i17 : RR

o17 = RR

o17 : InexactFieldFamily

And we can use these rings and fields as the coefficients for our own, user-defined polynomial rings:

i18 : R = QQ[x,y,z]

o18 = R

o18 : PolynomialRing

Now that we’ve defined our own polynomial ring, Macaulay2 can do arithmetic operations in R and
will appropriately type the results as being elements of our ring:

i19 : (x + y)*(y + z^2)

2 2 2
o19 = x*z + y*z + x*y + y

o19 : R

Macaulay2 has plenty of built-in functions for working with polynomial rings. Some (unsurprising)
facts about R can be obtained via:

i20 : gens R

o20 = {x, y, z}

o20 : List

i21 : isCommutative R

o21 = true

Polynomial rings in Macaulay2 come with a monomial ordering. The default is GRevLex but it is
possible to change it, if needed. Here we make a polynomial ring over a finite field, specify that we
want to use the Lex monomial ordering, and sum to random homogeneous polynomials of degrees 2 and
1. Macaulay2 will naturally print the output with ordered monomials. Now how Lex does not respect
degree.

i22 : S = ZZ/41[x,y,z,MonomialOrder=>Lex]

o22 = S

o22 : PolynomialRing

i23 : f = random(2,S) + random(1,S)

2 2 2
o23 = 13x - 10x*y - 15x*z + 10x + 2y - 20y*z + 4y - 14z - 3z

o23 : S

4 January 16 – Introduction to Affine Algebraic Geometry

4.1 Affine Varieties

For a fixed (usually infinite) field k, we think of the ring R = k[x1, . . . , xn] as being the ring of functions
on a particular geometric space, called affine n-space over k:

Definition 4.1. Affine n-space over k is the set

An
k = {(a1, . . . , an | ai ∈ k)}

of all n-tuples of elements of k. For a polynomial f ∈ R = k[x1, . . . , xn], we can think of f as a function
f : Qn

k
→ k, where to evaluate f at (a1, . . . , an) we plug in ai for each xi and evaluate the resulting

expression in k. One reason for insisting that k be a infinite field is because we want it to be true that f
is the zero function on An

k
if and only if f is the zero polynomial in R. This is only true if k is infinite.

Definition 4.2. The vanishing locus of a set of polynomials S ⊆ R, denoted V(S), is the set of points in
affine space where those polynomials simultaneously vanish.

V(S) =
{
p ∈ An

k | f (p) = 0 for all f ∈ S
}

A subset of affine space which is of the form V(S) for a set S ⊆ R of polynomials is called an affine
variety.

We note that for a set S of polynomials, V(S) is the same as V(I), where I is the ideal generated by S.
As a consequence of this observation, and the fact that R is noetherian, we get that every affine variety
X can be written as X = V(f1, . . . , fm), the vanishing locus of a finite set of polynomials.

Example 4.1. If we take the polynomial y − x2 in the ring R[x, y], then the affine space in question is
the usual plane R2, and the vanishing locus V(y − x2) is the familiar graph of the function y = x2.

Theorem 4.1. Facts about affine varieties:

a. An arbitrary intersection of affine varieties is an affine variety.

b. A finite union of affine varieties is an affine variety.

c. V(f1, . . . , fm) = V(f1) ∩ . . . ∩ V(fm).

Note that a. and b., together with the observation that the An
k
and the empty set are affine varieties,

imply that the affine varieties in An
k
form the closed sets of a topology on affine n-space, which is called

the Zariski topology.

V can be thought of as a function from the set of ideals in R to the set of affine varieties in An
k
. There’s

also a function from subsets of affine space to the set of ideals in R:

Definition 4.3. Let X ⊆ An
k
be a subset of affine space. We denote by I the set of all functions in R that

are identically zero on X:

I (X) = { f ∈ R | f (x) = 0 for all x ∈ X}

One readily checks that this is an ideal in R.

How do V and I interact?

Theorem 4.2. a. For any ideal I ⊆ R, I (V(I)) =
√

I = { f ∈ R | f m ∈ I for some m > 0}.

b. For any set X ⊆ An
k
, V(I (X)) = X, the closure of the set X in the Zariski topology mentioned in 4.1.

4.2 Groebner Bases and Elimination Ideals

5 January 18 – First Macaulay2 Hands-On Session

Today’s introduction to Macaulay2 worksheet is summarized below, with together with my solutions to
the problems.

5.1 Problem 1

a. Find the sum of all the multiples of 3 or 5 that are less than 1000. (Project Euler #1)

i1 : sum select(toList(1..999), p -> p%3 == 0 or p%5 ==0)

o1 = 233168

The expression 1..999 creates a sequence of the integers less than 1000, and toList converts it
to a list. select(L, f) takes a list L and a (boolean-valued) function f and returns the list of all
elements in L that satisfy f(p) == true. In this case, the function p -> p%3 == 0 or p%5 ==0
returns true if and only if p is 0 (mod 3) or 0 (mod 5). Finally, sum adds the values in a list.

Note that while this problem can be done “better” using Gauss’s formula for summing arithmetic
progressions and inclusion-exclusion, but since Macaulay2 has no trouble dealing with such short
lists and such small sums, there’s no reason to fret over efficiency here.

b. Find the sum of all the prime numbers that are less than 2 million. (Project Euler #10)

i2 : sum select(toList(2..2000000), isPrime)

o2 = 142913828922

Very similar to the approach to question a. It is worth noting that the syntax sum select(toList(2..2000000),
p -> isPrime p) would also work, but since isPrime is a built-in function, select will treat it as
such, without the need to wrap it in a function closure using the -> syntax.

c. Find the sum of the digits of 100! (Project Euler #20)

i3 : 100! // toString // characters / value // sum

o3 = 648

Here we see two useful binary operators: // and /. The first is an alternative syntax for applying
a function to an object. If X is a Macaulay2 object, and f is a function that can be applied to it,
then then all three of f(X), f X, and X // f are acceptable ways to apply f to X. Similarly, if L is
a list, and f is a function that can be applied to the elements of L, then L / f is the list obtained
by applying f to the elements of L. This can also be achieved using apply(L,f). It is worth noting
that these expressions work with the arguments reversed if we also reverse the slashed used. So X
// f is the same as f \\ X, and L / f is the same as f \ L.

For this problem, we take the integer 100!, convert it to a string, get the list of characters of that
string, get the value of each of those characters, and sum the resulting list.

d. What are the last ten digits of the integer
1000∑
n=1

nn ? (Project Euler #48)

i4 : (1..1000) // toList / (n -> powermod(n,n,10^10)) // sum % 10^10

o4 = 9110846700

Take the sequence of the first 1000 integers. Convert it to a list. To each element n of that list,
compute nn (mod 1010), which gives the last 10 digits of that number. Sum the entries in the
resulting list and reduce mod 1010 to get the last ten digits of the sum of those numbers.

It is worth noting that for this particular problem, using powermod may have been unnecessary.
powermod(a,b,n) is a function that computes ab (mod n) without ever computing ab. For example,
if we ask for powermod(3, 10ˆ9, 126), we get the answer of 81 right away. But if we instead asked
for 3ˆ(10ˆ9) % 126, Macaulay2 will not succeed. For this problem, the numbers may not have been
big enough for the distinction to matter.

5.2 Problem 2

a. How many monomials of degree 100 are there in k[x, y, z]? If those monomials are listed in decreasing
GRevLex order, which monomial is in the middle of the list?

First we create the polynomial ring in question. While GRevLex is the default monomial order in
Macaulay2, we specify it here for clarity.

i5 : R = ZZ/101[x,y,z,MonomialOrder=>GRevLex]

o5 = R

o5 : PolynomialRing

Now we ask for a basis for the graded summand of R of degree 100. Note we end this line with a
semicolon to prevent Macaulay2 from needlessly printing output.

i6 : B = basis(100,R);

1 5151
o6 : Matrix R <--- R

While the actual output o6 is suppressed, the line giving the type of the output is not, which lets
us see that B is a matrix of size 1 × 5151, which tells us how many monomials of the chosen degree
there are. To find the middle monomial of degree 100, we convert B to a list, sort the list, and
(remembering that Macaulay2 indexes lists starting from 0, take the entry in position 5151−1

2 . To
make sure this division returns an integer, we use // instead of /. We can’t use a rational number
as an index for an element of a list, even if we know that the rational number we’re using is actually
an integer; Macaulay2 will complain about the type mismatch.

i7 : (sort flatten entries B)_(5150//2)

19 52 29
o7 = x y z

o7 : R

b. Find all rational roots of y = x7 − 903x2 − 946x + 1848.

i8 : R = QQ[x]

o8 = R

o8 : PolynomialRing

i9 : factor (x^7 - 903*x^2 - 946*x + 1848)

4 3 2
o9 = (x - 4)(x - 1)(x + 2)(x + 3x + 15x + 55x + 231)

o9 : Expression of class Product

All we have to do find the rational roots of a (low degree) polynomial of one variable is factor it.
(In fact, we only need to repeatedly apply the rational root test). We see that x = −2, 1, 4 are teh
rational roots of this polynomial. If you want a challenge, try to think about how I might have used
Macaulay2 to find a polynomial with specified rational roots but with few terms of high degree.

c. Use Gröbner bases and elimination ideals to find all solutions to the following system (typing it into
Macaulay2 is half the battle. Using primaryDecomposition is cheating!).

0 = 3x2 − 6x + y2 + 2

0 = −x3 − 3x2y + 5x2 − 3xy2 + 6xy − 8x − y3 + 5y2 − 2y + 2

0 = 4x2y − 3x2 + 4xy2 − 6xy + 2x − 3y2 + 2y

i10 : R = QQ[x,y,z]

o10 = R

o10 : PolynomialRing

i11 : f = 2 - 6*x + 3*x^2 + y^2

2 2
o11 = 3x + y - 6x + 2

o11 : R

i12 : g = 2 - 8*x + 5*x^2 - x^3 - 2*y + 6*x*y - 3*x^2*y + 5*y^2 - 3*x*y^2 - y^3

3 2 2 3 2 2
o12 = - x - 3x y - 3x*y - y + 5x + 6x*y + 5y - 8x - 2y + 2

o12 : R

i13 : h = 2*x - 3*x^2 + 2*y - 6*x*y + 4*x^2*y - 3*y^2 + 4*x*y^2

2 2 2 2
o13 = 4x y + 4x*y - 3x - 6x*y - 3y + 2x + 2y

o13 : R

i14 : I = ideal(f,g,h);

o14 : Ideal of R

With the ideal in hand, we can ask for a Groebner basis. The generators with variables eliminated
will be the generators of the appropriate elimination ideal

i15 : G = gb I

o15 = GroebnerBasis[status: done; S-pairs encountered up to degree 4]

o15 : GroebnerBasis

i16 : gens G

o16 = | 2y2-3x+1 2x2-3x+1 |

1 2
o16 : Matrix R <--- R

The fact that 2x2 − 3x + 1 is a generator tells us that the solutions to this system must have
x-coordinates satisfying that equation:

i17 : factor (flatten entries oo)_1

o17 = (x - 1)(2x - 1)

o17 : Expression of class Product

so x = 1 or x = 1
2 . When x = 1 we see that the generators of the Groebner basis become:

i18 : sub(gens G, {x => 1})

o18 = | 2y2-2 0 |

1 2
o18 : Matrix R <--- R

which means y = 1 or y = −1. When x = 1
2 the Groebner basis generators become:

i19 : sub(gens G, {x => 1/2})

o19 = | 2y2-1/2 0 |

1 2
o19 : Matrix R <--- R

which means y = 1
2 or y = −1

2 . So the (rational) solutions to this system are (1, 1), (1,−1), (12,
1
2), (

1
2,−

1
2).

For those interested, the graphs of the three generators of I are shown below. The four solutions
are the four triple intersections.

d. Find generators for a radical ideal I such that V(I) ⊆ k3 is the union of the point (1, 1, 2), the line
parametrized by r(t) = (t, 2t, 3t + 1), and the cylinder z2 + x2 = 1.

Here, after defining the ring we’ll work with, we will find the ideals defining the point, line and
cylinder separately, intersect those ideals, and take the radical of the result. For the point, we take
the ideal generated by three linear equations that vanish at the point. I made the natural choice:

i20 : R = QQ[x,y,z]

o20 = R

o20 : PolynomialRing

i21 : P = ideal(x - 1, y - 1, z - 2)

o21 = ideal (x - 1, y - 1, z - 2)

o21 : Ideal of R

For the ideal defining the line, we need the polynomial equations of two planes that vanish on the
line.

i22 : L = ideal(2*x-y, 3*x - z + 1)

o22 = ideal (2x - y, 3x - z + 1)

o22 : Ideal of R

For the cylinder, we already have the equation of its defining ideal

i23 : C = ideal(x^2 + z^2 - 1)

2 2
o23 = ideal(x + z - 1)

o23 : Ideal of R

Then to answer the question, we just intersect the ideals, take the radical of the result, and we’re
done (output suppressed because it’s long, but we can get the generators of I if we need them.)

i24 : I = radical intersect(P,L,C);

o24 : Ideal of R

5.3 Problem 3

6 January 23 - R-modules

Definition 6.1. Let R be a commutative ring with 1. An R-module is an abelian group M together with
a scalar multiplication map R × M −→ M with the properties that, for any r, s ∈ R and m, n ∈ M we have

i. r(m + n) = rm + rn

ii. (r + s)m = rm + sm

iii. r(sm) = (rs)m

iv. 1m = m

If M is an R module and {m1, . . . ,md} ⊆ M is a set of elements in M, then the submodule generated by
{m1, . . . ,md}, denoted 〈m1, . . . ,md〉, is the set

〈m1, . . . ,md〉 =
{
r1m1 + . . . + rdmd

�� ri ∈ R, and all but finitely many are nonzero
}

M is called finitely generated if it contains a finite set {m1, . . . ,md} so that 〈m1, . . . ,md〉 = M

Example 6.1. R is an R-module, and it is finitely-generated because R = 〈1〉

Example 6.2. If I is ideal in R, then I can also be thought of as an R-module. If I is a noetherian ring,
then every ideal I is finitely-generated as an R-module.

Example 6.3. If I is ideal in R, then the quotient ring R/I is an R-module. It is finitely generated by
the class of 1 in the quotient ring.

Example 6.4. Let Rd denote the set of all d × 1 matrices (column vectors) of elements of R. It is an
abelian group with componentwise addition, and componentwise scalar multiplication by R makes Rd into
an R-module. It is finitely generated by the standard basis vectors

e1 =

1
0
...

0
0

, e2 =

0
1
0
...

0

, · · · , ed =

0
0
...

0
1

and is called a free R-module of rank d

If the ring in question is actually a field k, then the k-modules from example 6.4 are just vector spaces,
and up to isomorphism any finitely-generated k-modules is just kn for some n. If R is not a field, then
R-modules become a much richer object of study that can be thought of as a significant generalization of
vector spaces.

Example 6.5. Let R = k[x, y, z] and let M be the submodule of R3 generated by

m1 =

y

−x
0

 , m2 =

−z
0
x

 , · · · , m3 =

0
z
−y

The set {m1,m2,m3} is a minimal generating set for M in the sense that no proper subset generates M.

In fact, no set of 2 or fewer elements in M will generate M. While it might be tempting to think of this
set as a basis for M, we notice that it doesn’t really behave like a basis should: We can express 0 ∈ M as
an R-linear combination of m1,m2 and m3 in non-trivial ways. For example:

zm1 + xm2 + ym2 = 0.

This gives an example of an important difference between vector spaces and general R-modules. Over
a field k, all modules are free. But over a polynomial ring, this is not true. Furthermore, modules over
the ring Z are ordinary abelian groups. While non-free abelian groups do exist (torsion), a Z-submodule
of a free Z-module will still be free. As the above example illustrates, this is not true for more general
R-modules.

These facts about k-modules and Z-modules can be restated in terms of free resolutions, and then
generalized to R-modules.

Theorem 6.1. Let M be a finitely-generated k-module. Then there exists an exact complex of free
k-modules 0→ F0 → M → 0

This is trivial, of course, since M is already free we can just take F0 = M with any automorphism
between them. But a “better” proof is to let B be any basis of M, let F0 be the k-module with basis in
bijective correspondence with B, and let F0 → M be the linear map determined by sending the basis of
F0 to the corresponding elements of S. It is surjective by construction, and injective by linear algebra.

Theorem 6.2. Let M be a finitely-generated Z-module. Then there exists an exact complex of free
Z-modules 0→ F1 → F0 → M which is exact

Let G = {a1, a2, . . . , ag} be a finite generating set for M, and let ϕ0 : Zg → M be the Z-module
homomorphism determined by sending the standard basis for Zg to the elements of G. This is surjective
by construction, but it might have a kernel. However, ker(φ0) is a submodule of a free Z-module, so it is
also free (structure theorem for modules over a PID). So, letting F1 − ker(φ0) and letting φ1 : F1 → F0 be
the inclusion homomorphism, we have constructed an exact complex of Z-modules:

0→ F1
φ1
−−→ F0

φ0
−−→ M → 0

It is worth noting that in both of the above examples, if we know the whole complex except for M,
we can still recover M. In the abelian group setting, M is the cokernel of φ1. In the vector space case, M
is just F0, which you can think of as the cokernel of the inclusion map 0→ F0.

We want to generalize this to modules over the ring R = k[x1, . . . , xn], but first we’ll add a bit of
structure.

Definition 6.2. The ring R is graded by degree. It can be written as a direct sum of finitely-generated
abelian groups

R =
⊕
d>0

Rd

where Rd is the free abelian (sub)group of R generated by all degree d monomials. The multiplication
in R respects this grading, in the sense that the multiplication map R×R→ R descends to a map on graded
pieces Rs × Rt → Rs+t . An R-modules M is called a graded R-module if M has a direct sum decomposition

M =
⊕
d>0

Md

So that the R action R × M → M descends to an action on graded pieces Rs × Mt → Ms+t . A graded
homomorphism ϕ of graded R-modules M and N is one satisfying ϕ(Md) ⊆ Nd for all d.

This definition may seem artificial, but note that 6.1 and 6.4 are in fact graded modules. If I is an
ideal generated by homogeneous polynomials, then 6.2 and 6.3 are also graded R-modules.

Theorem 6.3. Hilbert Syzygy Theorem. Let R = k[x1, . . . , xn] and let M be a graded R-module. Then
there exists an exact sequence of graded R-modules:

0→ Fr
φr
−−→ Fr−1

φr−1
−−−−→ Fr−2

φr−2
−−−−→ . . .

φ2
−−→ F1

φ1
−−→ F0

φ0
−−→ M → 0

where:

- The Fi are all free of finite rank.

- The φi are all graded homomorphisms.

- r 6 n

7 January 25 - More on Graded Modules, Minimal Free Resolutions,
Betti Numbers

Before we continue, it’s worth noting that when we consider R-modules without thinking about the grading,
there is only one (up to isomorphism) free R-module of rank 1, namely R. However, if we consider graded
R-modules and graded isomorphisms, this is no longer true. If F is a free graded R-module of rank 1 with
generated e, then as a set, F is the set {r ·e | r ∈ R. If F ′ is another free R-module of rank 1 with generator
e′, then any isomorphism between them has to carry e to a unit multiple of e′. But (since units have
degree 0) such a map can only be graded if e and e′ have the same degree. So we end up with different
graded free modules of rank 1, corresponding to the possible degrees of the generator. Such modules are
useful when we’re constructing free resolutions: Say I is an ideal generated by homogeneous polynomials
f and g in R of degrees 2 and 3. Then if we want a free module that maps onto the kernel of the projection
map R → R/I, it will need to have one generator of degree 2 and one generator of degree 3 in order for
the map to be graded.

Definition 7.1. With R = k[x1, . . . , xn] with its standard grading, we use R(−n) to denote the free R-
module of rank 1 generated in degree n. More generally, if M is any graded R-module, we use M(−n) to
denote the “shifted” R module with graded pieces given by M(−n)d := Md−n.

In the example outlined above, a free resolution of R/I would begin:

R(−2) ⊕ R(−3) −→ R −→ R/I −→ 0

We are interested not just in the resolution guaranteed by the Hilbert Syzygy Theorem (which is both
a resolution of finite length and is made up of finitely-generated free modules) but in fact we want the
minimal such resolution. What does that mean? We hope it describes the result of the intuitive process.
If M is a finitely generated R-module, then it has a (not unique) minimal generating set. If we take a
surjective map from a free module with bases corresponding to those generators, that map’s kernel has a
(not unique) minimal generating set we can use to repeat this process.

But there’s no guarantee that this intuitive process actually stops with a finite resolution. There’s no
guarantee that the choices you make in picking one generating set don’t affect the size of the generating

sets of the kernels later in the process, and there isn’t even a guarantee that you couldn’t pick a non-
minimal generating set for M at the first step, leading to a later step where you get an even smaller
generating set than you would have found if you’d started with a minimal generating set for M.

Luckily, none of these “problems” actually ever arise, but it’s worth fretting about them momentarily
in order to motivate a more precise definition of minimal

Definition 7.2. Let m be the graded irrelevant ideal of R (the ideal generated by (x1, . . . , xn)), and
consider a complex of R-modules F• :

· · · −→ Fd
φd
−−→ Fd−1 −→ · · ·

F• is called minimal if the image of φd is contained in mFd−1 for all d.

Theorem 7.1. F• is minimal if and only if for all d, φd takes a basis for Fd to a minimal generating set
of its image.

Proof: Consider the right exact sequence

Fd
φd
−−→ Fd−1 → im(φd−1) → 0,

as well as the (still right exact) sequence obtained by applying the functor − ⊗R R/m :

Fd ⊗R R/m
φd ⊗RR/m
−−−−−−−−→ Fd−1 ⊗R R/m→ im(φd−1) ⊗R R/m→ 0,

which is best re-written as

Fd/mFd
φd ⊗RR/m
−−−−−−−−→ Fd−1/mFd−1 → (im(φd−1))/m(im(φd−1)) → 0,

The complex is minimal if and only if φd ⊗R R/m is the zero map (for all d) if and only if the surjective
map in the above sequence is actually an isomorphism (for all d). But (im(φd−1))/m(im(φd−1)) is a vector
space with dimension equal to the size of a minimal generating set for im(φd−1). So if the isomorphism
above sends a basis for Fd−1/mFd−1 to a basis m̄1, . . . , m̄l, which generate (im(φd−1))/m(im(φd−1)), which
means (by Nakayama’ s lemma) that m1, . . . ,ml generate im(φd−1) minimally

Note: the condition that the image of φd is contained in mFd−1 is the same as saying that φd can also
be expressed as a matrix of homogeneous elements in m.

They exist, any two of them are isomorphic by a chain complex isomorphism that is the identity on
M, and any free resolution of M contains a copy of the minimal free resolution as a direct summand.

Example 7.1. Koszul complexes: Let R = k[x, y, z]. The ideal I = (x) has minimal free resolution

0→ R(−1)

[
x
]

−−−→ R→ R/I → 0

The ideal J = (x, y) has minimal free resolution

0→ R(−2)

y

−x

−−−−→ R2(−1)

[
x y

]
−−−−−−→ R→ R/J → 0

And the ideal K = (x, y, z) has minimal free resolution

0→ R(−3)

x
y

z

−−−→ R3(−2)

0 z −y

−z 0 x
y −x 0

−−−−−−−−−−−−−−→ R3(−1)

[
x y z

]
−−−−−−−−−→ R→ R/K → 0

These are examples of the koszul complex on a set g1, . . . , gr ∈ R. they give minimal free resolutions
but only sometimes.

We haven’t yet proven that minimal free resolutions exist, are unique up to chain complex isomorphism,
and can be found as a direct summand of any free resolution. Postponing that for the moment, we
introduce the Betti numbers of a finitely-generated graded R-module M, a numerical invariant of M which
is determined by the minimal free resolution:

Definition 7.3. Let M be a finitely generated R-module, and let F• be a minimal free resolution of M.
The number(s) of degree j generators needed for Fi are called the graded betti numbers of M and are
denoted βi, j .

8 January 28 - Betti Diagrams, The Koszul Complex for R/m, Proof of
Hilbert Syzygy Theorem

Last time we define the graded betti numbers of a (finitely-generated graded) R-module M: βi, j is the
number of degree j generators in the ith free module in a minimal free resolution of M . Now we prove the
equivalence of a more homological definition:

Theorem 8.1. Let M be a finitely generated graded R-module and suppose F• is a minimal free resolution
of M. Then, in a minimal (homogeneous) generating set for Fi, there are exactly TorRi (M, R/m)j generators
of degree j. In other words,

βi, j = dimk

(
TorRi (M, R/m)

)
j

Proof. TorRi (M, R/m)j can be found by taking jth graded piece of the ith homology of the complex
F• ⊗R R/m. Since the complex F• is minimal, after tensoring with R/m, all maps become zero maps. So
the ith homology is just Fi ⊗R R/m, and the dimension of the degree j component of this vector space is
the number of generators of degree j that Fi has (again using Nakayama’s lemma).

When we know the graded betti numbers of an R-module, we use betti diagrams to encode them: Note
that while the columns correspond to homological degree, the rows do not correspond to generator degree;
instead, there’s a shift depending on homological degree: In column i, row j we put βi, j+i. The reasons
for this choice will be made clear later. Note that while any chain complex of graded free modules has a
betti table, when we refer to the betti table of M, we mean the betti table of its minimal free resolution,
which have the homological interpretation noted above.

0 1 2

0 β0,0 β1,1 β2,2
...

...
...

...

j β0, j β1, j+1 β2, j+2
j + 1 β0, j+1 β1, j+2 β2, j+3

Theorem 8.2. Fix M, R as above and fix a homological degree i. If there is a d so that βi, j = 0 for j < d,
then βi+1, j+1 = 0 for all j < d. In other words, if there’s a zero in the Betti table of M that also has a
column of zeros above it, then it has a rectangle of zeros above and to the right of it, going on forever.

Proof. By assumption, Fi has no generators (hence no elements at all) of degree less than d. Consider
a generator of Fi+1. It has to map to something nonzero in mFi (if it maps to zero, the map to Fi+1 has
a unit in its matrix representation, contradicting minimality). Since all nonzero elements of mFi have
degree d + 1 or higher, the generator of Fi+1 must also have degree d + 1 or higher. So βi+1, j+1 = 0 is j < d

Example 8.1. Let R = k[x, y, z] and let I = (xy, yz). The minimal free resolution of I is

R/I ← R1

[
xy yz

]
←−−−−−−−−− R2(−2)

z
−x

←−−−− R1(−3) ← 0

This is the minimal free resolution, which shows that β0,0 = 1 (true for any quotient of R by a
homogeneous ideal), β1,2 = 2, encoding the number of and degrees of a minimal generating set for I, and
β2,3 = 1 = 1, encoding the only relation among the generators of I, namely that z(xy) − x(yz) = 0. The
betti diagram of R/I is therefore

0 1 2

0 1 - -
1 - 2 1
2 - - -

Later we will see more Betti diagrams, learn about their geometric content, and see how to use
Macaulay2 to find them. But for now we’ll introduce the Koszul complex and use it to prove a result
about Betti numbers that implies the Hilbert Syzygy Theorem from earlier:

Definition 8.1. Consider R = k[x1, . . . , xn] with m = (x1, . . . , xn). Let F be the graded free module Rn(−1)
with bases e1, . . . , en, and let E =

∧
•F, the exterior algebra on F. Then E itself is graded (since the degree

of each ei is 1, the degree of a wedge product ei1∧...∧eid is just d), and the graded pieces of E form a chain
complex which is a free resolution of R/m. Note that

E0 = R

E1 = F =
⊕
i

Rei

E2 =
⊕
i< j

Rei ∧ ej

E3 =
⊕
i< j<k

Rei ∧ ej ∧ ek

...

En = Re1 ∧ . . . ∧ en

En+1 = 0

En+2 = 0

...

The R-module map ∂ : Ed −→ Ed−1 defined on basis elements by

∂(ei1 ∧ . . . ∧ eid) =
d∑
j=1

xjei1 ∧ . . . ∧ êi j ∧ . . . eid

Makes
· · · Ei+1 → Ei → Ei−1 → · · ·

into a chain complex of free R-modules. One can check that this is indeed a complex, and that it is
exact except at E0, where the homology is R/m. This gives us a free resolution of k = R/m

Theorem 8.3. Let M be a finitely generated R-module. The Betti numbers of M satisfy βi, j = 0 if
i > n. In other words, the minimal free resolution of M doesn’t have nonzero terms in homological degrees
greater than the number of variables in R.

Proof: Using the formula βi, j = dimk

(
TorRi (M, R/m)

)
j , we note that we can compute Tor using a free

resolution for M or a free resolution for R/m. If we use the Koszul complex for R/m, we start with a free
resolution for k = R/m:

E0
∂
←− E1

∂
←− E2 ← · · · ← En ← 0

Applying the functor M ⊗R − we have

M ⊗R E0
M⊗R∂
←−−−−− M ⊗R E1

M⊗R∂
←−−−−− M ⊗R E2 ← · · · ← M ⊗R En ← 0

A not necessarily exact chain complex whose homology at the term M ⊗ Ei will compute the Tor we’re
interested in. This proves the statement above, but note that we can actually say a little more:

Instead of taking Tor and looking at the jth graded piece, we can instead look at the degree j strand of
this complex and look at the homology of that complex of vector spaces in homological degree i. Because
we know the degrees of the Ei modules, the degree j strand of this complex will look like:

Mj ⊗R E0 ← Mj−1 ⊗R E1 ← Mj−2 ⊗R E2 ← · · · ← Mj−n ⊗R En → 0.

The betti number βi, j is the dimension of the homology of this complex of vector spaces in homological
degree i. The most this number could possibly be is the product of the ranks of the tensored vector spaces:

βi, j 6 dimk(Mj−i) ·

(
n
i

)
The function d 7→ the dimension of the degree d summand of M is called the Hilbert Function of M,

and we’ll talk about it next time.

9 January 30 - Projective Geometry, Hilbert Functions

Snow Day!

10 February 1 - Worksheet 2

a. Let `1, `2, `3 be three general homogeneous linear polynomials in R = k[x0, x1, x2], and let I be the
ideal (`1`2, `1`3, `2`3). Describe the projective variety V(I) ⊆ P2

k
.

b. Let `1, `2, `3, `4 be four general homogeneous linear polynomials in R = k[x0, x1, x2], and let J be the
ideal (`1, `2`3`4). Describe the projective variety V(J) ⊆ P2

k
.

c. Try to find the betti numbers of R/I and R/J, first by constructing minimal free resolutions by hand,
then by checking your answers using Macaulay2.

d. Find the Hilbert Functions and Hilbert Polynomials of R/I and R/J. Explain the geometric signifi-
cance of the difference in the Hilbert Functions.

a. Let R = k[x0, . . . , xn], and let M be a graded R-module. We’ve proven the Hilbert syzygy theorem,
which says that M has a free resolution of length at most n+1. Now we’ll prove a bound in the other
direction. Prove that if 0 6 m 6 n and M contains a submodule that is isomorphic to R/(x0, . . . , xm),
then M does not have a free resolution of length less than m + 1.

b. Let R = k[x0, x1, x2, x3] and let I = (x0, x1) ∩ (x2, x3). (V(I) is two lines in P3
k
that don’t intersect.)

Prove that I = (x0x2, x0x3, x1x2, x1x3), and compute the minimal free resolution of R/I. Why does
your answer not contradict what was proven in 2a?

In Macaulay2, using the ideal I from question 2b, run the command F = koszul gens I. Now F is a
chain complex in Macaulay2. You can look at the modules in the complex with F_i, you can look at the
differentials in the complex with F.dd_i, and you can even see the betti table of the complex with the
command betti F.

a. What can you say about this chain complex as it relates to I?

b. In class I claimed (without proof) that the minimal free resolution of any graded R-module M can be
found as a subcomplex of any graded free resolution of M. Using degree considerations, prove that
the minimal free resolution of R/I is not a subcomplex of F, and explain why this doesn’t contradict
my claim.

11 February 4

11.1 The Hilbert Function, Series, and Polynomial

With R = k[x1, . . . , xn] with the usual grading and M a finitely-generated graded R-module, we’ve seen that
the minimal free resolution of M determines the graded Betti numbers of M. Today we’ll see some coarser
invariants of M that are determined by the graded Betti numbers (or by the minimal free resolution).
Our eventual goal is an algorithmic computation of the minimal free resolution of M, which will give us
computational access to all these other algebraic invariants.

Definition 11.1. Let M be a finitely-generated graded R = k[x1, . . . , xn]-module. The Hilbert Function
of M, denoted by HM (or sometimes HFM), is the function defined on any non-negative integer d by:

HM (d) = dimk(Md).

When I is an ideal in R, it is a common abuse of notation to say the Hilbert function of I to refer to the
Hilbert function of R/I. Though, in light of example 11.1 below and the standard 0→ I → R→ R/I → 0
exact sequence of graded R-modules, the Hilbert functions of I as an R-module and of R/I are very closely
related.

The hilbert function has geometric significance. For a very simple example, which we saw on the
previous worksheet, let I be the ideal of a set X of points in P2. There is a 3-dimensional vector space
of linear functions in k[x0, x1, x2]. What is the dimension of the space of linear functions that vanish on
X? It’s the degree 1 component of R/I. If X consists of just 1 point, then HI (1) = 2. If X consists of 2
points, then HI (1) = 1. But when X is three points, the hilbert function HI (1) can be either 1 or 0. This
is because if the three points are not collinear, there are no linear functions that vanish on all three. But
if the three points are collinear, then there’s a 1-dimensional vector space of linear functions that vanish
on them: any scalar multiple of the equation of the line passing through all three points.

Example 11.1. The Hilbert function of the graded ring R = k[x0, . . . , xn] is given by

HR(i) =
(
n + i

i

)
.

This is because Ri is spanned as a k-vector space by the set of degree i monomials in the n+1 variables
of R. The number of such monomials is found using a “stars and bars” counting argument: A degree d
monomial can be represented as a string of length n + i made up of i stars and n bars. The continguous
blocks of stars encode the powers on the different powers of the variables; the bars separate the blocks of
stars to encode which power goes on which variable. The following string of length 10 + 7 = 17

∗ ∗ ∗| ∗ ∗| | ∗ ∗| ∗ | | | ∗ ∗

corresponds to the degree 10 monomial x30 x21 x23 x4x27 . All strings encoding a degree i monomial in the
variables x0, . . . , xn will be of length n + i, and the number of such strings is equal to the number of ways
to choose which i of the n + i characters will be stars.

Similarly, for the degree-shifted R-module R(−d), the Hilbert function is

HR(−d)(i) = dimk(R(−d)i) = dimk Ri−d = HR(i − d) =
(
i − d + n

i − d

)
=

(
i − d + n

n

)
.

It turns out that for large values of i, the Hilbert function HM (i) is equal to a polynomial p(x) ∈ Q[x]
evaluated at i.

Theorem 11.1. Let M be a graded R-module. Then we can compute the Hilbert function of M in terms
of a finite-length free resolution of M.

Proof. Suppose M has a free resolution of the form

0← M ← F0 ← F1 ← · · · ← Fm ← 0,

and suppose further that each Fi is the finitely generated free R-module:

Fi =
⊕

j

F(−ai, j)

for some integers ai, j . Then if we look at the degree ` subcomplex of vector spaces and consider degrees,
we see that

HM (`) =

m∑
i=0

(−1)`HFi (`) =

m∑
i=0

(−1)i
∑
j

HR(−ai, j)(d) =
m∑
i=0

(−1)i
∑
j

(
` − ai, j + n

n

)
Note that we didn’t need the complex to be minimal, we just needed a finite-length free resolution

comprised of finitely-generated R-modules.

Theorem 11.2. There is a polynomial PM (x) ∈ Q[x] satisfying that for any ` > max{ai, j − n}, we have
HM (`) = PM (`).

Proof. Note that(
` − ai, j + n

n

)
=
(` − ai, j + n)(` − ai, j + n − 1)(` − ai, j + n − 2) · · · (` − ai, j + 1)

n!

is a polynomial with rational coefficients in the variable ` provided ` − ai, j + n ≥ 0. So for values of `
satisfying ` > ai, j − n for all ai, j , the value of HM (`) is equal to the value of the polynomial given by the
equation in the proof of 11.1.

Definition 11.2. The polynomial in 11.2 does not depend on the free resolution used in 11.1, because if
two polynomials in Q[x] agree at infinitely many x-values, then they’re the same polynomial. It is called
the Hilbert polynomial of M

Theorem 11.3. The Betti numbers of M determine the Hilbert function.

Proof. If {βi, j} are the graded Betti numbers of M, a module over R = k[x0, . . . , xn], then let

Bj =
∑
i>0

(−1)iβi, j .

Using the minimal free resolution of M and continuing the expression in 11.1, we see that the Hilbert
function of M is given by the formula

HM (`) =

m∑
i=0

(−1)i
∑
j

(
` − ai, j + n

n

)
=

∑
j

Bj

(
` + n − j

n

)
This formula comes from “rearranging the expression” in 11.1, I don’t see how. Something like: the first
expression is taking the alternating sum over each Fi of a sum that has terms coming from each graded
component of Fi. The second expression is a sum in each degree of the alternating sum of the dimension
in that degree of each Fi. Unclear. Also, using this formula with j plugged in for `, you get a recursive
formula for Bj in terms of previous Bk via

Bj = HM (j) −
∑
k< j

Bk

(
n + j − k

n

)
Definition 11.3. For M a finitely-generated graded R = k[x0, . . . , xn]-module, the Hilbert series of M is
the power series in the variable t given by

HSM (t) =
∞∑
d=0

HM (d)td

The Hilbert series is a rational function, since it is a power series with coefficients eventually given by
a polynomial.

All of these are computationally accessible if we have a minimal free resolution of M. Next time we’ll
talk about algorithms to find the minimal free resolution.

12 February 6 - Algorithms for minimal free resolutions

Our current goal is to describe explicit algorithms for computing minimal free resolutions for finitely-
generated graded k[x1, . . . , xn]-modules. Our primary resource for this discussion is the paper “Strategies
for Computing Minimal Free Resolutions” by La Scala - Stillman [make second bib.]. There’s a little bit
of setup needed first, where we extend our notions of monomial orderings to apply to more general rings
and modules. (Some of this will not be necessary, strictly speaking, but by doing it we’ll end up with
a class of algorithms that can compute free resolutions for modules over a more general class of rings.)
Then we’ll see some algorithmic computations of free resolutions over R (and over more general rings).
Finally, we’ll see some ways to improve efficiency and performance.

12.1 More general terms orders:

For all of what follows, let R = k[x1, . . . , xn] and fix a monomial ordering > on R. When S = R/J is a
quotient of R by an ideal J, then let N be the k-vector space spanned by the set of standard monomials in
R, which is the set of monomials that are not in the initial ideal of J. Any element f in the quotient ring S
can be written in a unique way as the coset of J represented by an element of g ∈ N, and we define leading
term, coefficient and monomial of f to be the corresponding leading thing of the unique representative g.

For any subset G of the quotient ring S, we will use in(G) for the k-vector space of initial monomials
of elements of S. Note that in(S) = N, and as vector spaces we have a decomposition R = N ⊕ in(J)

If F is a free S-module with a chosen basis E , we use F̂ to denote the free R-module with basis Ê in
natural correspondence with the basis of F.

Definition 12.1. A monomial in F is an element n · e ∈ F, where n ∈ N is a standard monomial, and
e ∈ Ê is a basis element for F̂. (Note that “a monomial of F” is in fact an element of the free R-module
F̂. This is similar to the way elements of S can be expressed in a canonical way using elements of R)

A term order on F is a total order on the monomials of F satisfying that for any monomials m1 = n1 ·e1
and m2 = n2 · e2 in F, basis vector e ∈ Ê and for any ordinary monomials s, t ∈ R

a. m1 > m2 ⇒ tm1 > tm2

b. s > t ⇒ s · e > t · e

Once we’ve fixed a term order on F, and element f ∈ F can be written uniquely as the image of an
element f̂ ∈ F̂ of the form

f̂ = c1 · m1 + . . . + ck · mk

where the coefficients ci are in k and the mi are monomials. the lets us define the leading coefficient,
leading term, and leading monomial (leading power product) of f ∈ F as you’d expect: The leading
coefficient of f is c1. The leading monomial of f is m1 (which, recall, is a standard monomial in n ∈ N
times a basis vector in ê ∈ Ê), and the “leading power product” is n

What good is this generalization of monomial orderings to free modules over quotients of R? There
are two reasons: One is that it gives you a generalization of Gröbner basis: For a submodule K of F, a
subset G = {g1, . . . , gs} ⊆ K is a Gröbner basis for K if the initial monomials of the elements of G generate
in(K). This allows us to algorithmically check the “submodule membership” question, similar to the ideal
membership question from befow.

Additionally, given an tuple (f1, . . . , fm) ∈ F, Gröbner bases will allow us to compute generators for the
module of Syzygies for this tuple, which (as we’ll see) is relevant to the task of computing free resolutions.

Definition 12.2. Let (f1, . . . , fm) ∈ F be a tuple of elements in a free S-module. Then the (first) module of
syzygies of this tuple is the set of all column vectors (a1, . . . , am)> ∈ Sm satisfying a1 f1+ . . .+am fm = 0 ∈ F.
It is denoted Syz(f1, . . . , fm).

Finding generating sets, (especially minimal generating sets) for the module of syzygies is significant
because of its relation to building a free resolution: If · · · ← Fi−1

ϕi
←−− Fi is the beginning of a free resolution,

then the standard basis for Fi is mapped by ϕi to an ordered tuple of generators of the image of ϕi. Loosely
speaking, the generators of the module of syzygies for this tuple will be columns in the matrix defining
ϕi+1. (Proofs and whatnot postponed until later)

13 February 8

13.1 Schreyer Resolutions and Schreyer Frames

Last time we talked about how, given a monomial ordering on R, we get to define leading (term / coefficient
/ monomial) for elements of R, R/J, F̂ and F. However, it’s not necessarily the case that S will get a
“monomial ordering” (as defined last time when F = S1) just by using the ordering from R on standard
representatives. By way of example (from Chris), consider the GrLex ordering on R = k[x, y] and the
ideal J = (xy − 1). The standard monomial basis for R/J are just the powers of x and the powers of y,
{1, x, y, x2, y2, . . .}, since the initial ideal of J is (xy). However, in S we can consider the elements x > y.
Multiplying both of these elements by x, we end up with xy > y2, but after rewriting using standard
monomials we have 1 > y2. This means GRLex does not descend to a monomial ordering on the R/J.

However, it is worth noting that before we quotient, free modules over R do inherit a monomial order
from the order on R: Namely, choose an ordering e1 > e2 > . . . > en and compare monomial summands
in this order.

With the same S = R/J as before, consider a complex of free S-modules:

F• = F0
ϕ1
←−− F1

ϕ2
←−− F2 ← · · · Fi−1

ϕi
←−− Fi ← · · ·

Where each Fi has a canonical basis Ei

Definition 13.1. A sequence {τ0, τ1, . . .} of term orders (on F0, F1, . . . respectively) on the modules of F•
is called a term ordering on F• if for any e1, e2 ∈ Ei and any s, t ∈ R (or in S??) we have

s · lm(ϕi(e1) > t · lm(ϕi(e2) ⇒ s · e1 > t · e2.

Given a term ordering on Fbullet , we defined the initial terms of F•, denoted in(F•), to be the complex
with the same modules as F• but with different maps:

in(F•) = F0
ξ1
←−− F1

ξ2
←−− F2 ← · · · Fi−1

ξi
←− Fi ← · · ·

where ξi is the map defined by sending any basis element e ∈ Ei to the initial monomial of ϕi(e). I
think this is the same as taking the matrix representations of the maps in F• and, thinking of the columns
as the generators of the image of ϕi, replace those columns with their initial monomials.

Definition 13.2. For M and S-module, a complex of free S-modules

F• = F0
ϕ1
←−− F1

ϕ2
←−− F2 ← · · · Fi−1

ϕi
←−− Fi ← · · ·

together with a term ordering {τ0, τ1, . . .} is called a Schreyer resolution for M if:

i. F• is exact.

ii. coker(ϕ1) = M.

iii. The image of ϕi(Ei) is a Gröbner basis for the image of ϕi.

Definition 13.3. For an S-module M, a sequence

Ξ• = F0
ξ1
←−− F1

ξ2
←−− F2 ← · · · Fi−1

ξi
←− Fi ← · · ·

together with a term ordering {τ0, τ1, . . .} is called a Schreyer frame for M if:

i. Each column of each matrix ξi is a monomial.

ii. M = F0/K for some submodule K, and ξ1(E1) is a minimal set of generators for in(K).

iii. ξi(Ei) is a minimal set of generators for the kernel of ξi−1 for all i > 2

If F• is a Schreyer resolution for M, then in(F•) is a Schreyer frame for M. But you can also construct
a Schreyer resolution for M starting from a Schreyer frame. So how do we find a Schreyer frame for M?

a bit of notation first: For a given Schreyer frame, we let Bi be the image of Ei under ξi. For a basis
element e ∈ Ei−1, we let Ei(e) be the (possibly empty) set {ε ∈ Ei | ξi(ε) = t · e} where t is a monomial
(power product) in S.

LEMMA 3.5 AND ITS PROOF (tells you an algo to compute a schreyer frame based on one map,
presumably the presentation map for M?)

14 February 11 - Example of Computing a Schreyer Frame

Our goal for today is to understand the definitions and claimed results from last week with an explicit
example.

Example 14.1. Let R = k[x, y, z] with the GrLex monomial ordering. Then the free module R3 with
standard basis {e1, e2, e3} can be given the term over position up term order, defined by

mi · ei > mj · ej ⇔ mi > mj or mi = mj and i > j .

Under this term ordering, the initial term of (x2 + y2) · e1 + (x2 + xy) · e2 + z2 · e3 would be x2 · e2. Now,
consider the map ϕ to R3 from R5 shown below, where R4 has standard basis {ε1, ε2, ε3, ε4, ε5}.

R3

ϕ =

x2 + yz x2 + y2 x2y xy x

y2 x2 + xy x2z xz z
x2 + z2 z2 y2z y2 y

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R5

We note that, if we want a term order on this complex, we can’t just put the term over position up
ordering on R5. This is because the compatibility condition

mi · (in(ϕ(εi))) > mj · (in(ϕ(εj))) =⇒ mi · εi > mj · εj

is not satisfied. For example, consider x · ε2 and x · ε1. Applying ϕ and taking initial terms we see that

x · in(ϕ(ε1)) = x3 · e3
x · in(ϕ(ε2)) = x3 · e2

and so x · in(ϕ(ε1)) > x · in(ϕ(ε2)), which necessitates the comparison in x · ε1 > x · ε2, which contradicts
term over position up order on R5. But we can always come up with a compatible term ordering. Consider
the initial terms of ϕ (We’re not going in circles here: to take the initial terms of a complex, you only
need a term ordering on the codomain of every map)

R3

in(ϕ) =

0 0 x2y xy x
0 x2 0 0 0
x2 0 0 0 0

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R5

First, place a total order on each of the subsets of {ε1, ε2, ε3, ε4, ε5} that get sent to multiples of a
particular element of {e1, e2, e3} by in(ϕ). In this case, we can order {ε5 > ε4 > ε3}, and there are no
choices to be made for {ε2} or {ε1}. Now, define an term ordering on R5 by

mi ·εi > mj ·εj ⇐⇒ miin(ϕ(εi)) > mj in(ϕ(εj)) or miin(ϕ(εi)) = mj in(ϕ(εj)) and εi > εj in the chosen total order.

Now that we have an term order for the two-term complex defined by ϕ, the kernel of in(ϕ) is some
submodule of R4. We want a minimal generating set for the initial submodule of this kernel, using the
lemma from the end of Friday’s class.

Consider f ∈ ker(in(ϕ)). The only possible ε1 coefficient is 0. Similar for ε2. However, all three of
ε3, ε4 and ε5 are sent to monomial multiples of e1, so the kernel can have nonzero coefficients on these
basis elements. Suppose f = p3ε3 + p4ε4 + p5ε5, and its image under in(ϕ) is (x2yp3 + xyp4 + xp5)e1 = 0.
It can’t be the case that p3 , 0 while p4 = p5 = 0. If p3 is nonzero then so is at least one of p4 and p5,
and since f is in the kernel of in(ϕ), this means any monomial m · e1 in in(ϕ)(p3ε3) is cancelled by a term
from in(ϕ)(p4ε4) or in(ϕ)(p5ε5). By our definition of the term order on R5, this means the initial term of
f can’t be a multiple of ε3 (This is why the inner union in the lemma starts at j = 2.

If p5 = 0, then any monomial in p4 has to have the property that, after you multiply by xy, it is in the
ideal generated by x2y. In otherwords, any monomial in p4 (and hence the coefficient on the initial term
of f) is in the ideal (x2y : xy) = (x), and any minimal generator of this ideal shows up as the initial term
of some f ∈ ker(in(ϕ)). So x · ε4 is a generator of the initial module of the kernel of the initial terms of ϕ

If p5 , 0, then any monomial in p5 has to have the property that, when you multiply it by x, it’s
in the ideal (x2y, xy). In other words, the initial monomial of f is a multiple of ε5 by an element of
(x2y, xy) : (x) = (xy : x) = (y). So y · ε5 is a generator of the initial module of the kernel of the initial terms
of ϕ. And that’s all.

Re-stating the result from the end of lecture 13 in this context (without a quotienting ideal):

Theorem 14.1. Let R = k[x1, . . . , xn] be a polynomial ring with monomial order >, and consider a
two-term complex of free R-modules

F0
ξ1
←−− F1

with monomial columns, and with a chosen term order on F0. Let {e1, . . . , en} be the canonical basis
for F0 and let ε1, . . . , εm be the canonical basis for F1. For each ei, let Xi = {εi1, . . . , εiri } be the (possibly
empty) set of basis elements of F1 which are mapped by xi1 to monomial multiple of ei.

a. Choosing a total order Bi = {εi1 < · · · < εiri } determines a total order on the complex F•

b. The minimal generating set of in(ker(ξ1)) is the following:⋃
ei

⋃
εi j ∈Bi

j>2

{
m · εi j

�� m is a minimal generator of (Ii, j−1 : ci j)
}

Here ci j is the monomial coefficient on ξ(εi j), and Ii, j is the monomial ideal Ii, j = (ci1, ci2, . . . , ci j)

Now, suppose M is a finitely-generated R-module, so that M is a quotient of a finitely-generated free
R-module F0 by an R-submodule N. We can compute a Schreyer frame for M by the following procedure:

1. Consider a map F0
ϕ1
←−− F1 presenting M .

2. Put a term order on F0 (term over position up is fine) and let ξ1 = in(ϕ1).

3. Apply 14.1 to the complex F0
ξ1
←−− F1. This gives us a term order on F1 and a minimal generating

set for in(ker(ξ1)).

4. Use this minimal generating set to construct F1
ξ2
←−− F2, a monomial map that surjects onto in(ker(ϕ)).

5. Repeat as many times as needed.

This gives us a Schreyer frame for M. Next time, we’ll talk about how to fill in a Schreyer frame to
get a Schreyer resolution for M, and eventually how to use the Schreyer resolution to get a minimal free
resolution.

15 February 13 - Example of Computing a Schreyer Resolution

Now that we know how to compute a Schreyer frame for a given R-module M, we want to see how to fill
it in to get a Schreyer resolution for M. Once again we’ll accomplish this via an example.

Example 15.1. Let ∆ be the simplicial complex attained by triangulating RP2 as shown below: Note
the identifications made on the boundary. ∆ has 6 vertices, 15 edges and 10 triangles. Let R =
k[x1, x2, x3, x4, x5, x6] with variable corresponding to the vertices of ∆. We will consider the Stanlei-Reiser
ideal I∆ ⊆ R of ∆, which is the ideal generated by the squarefree monomials corresponding to subsets of
{1, 2, 3, 4, 5, 6} that are not faces of ∆.

With the simplicial complex above, we have

I∆ = (x3x5x6, x2x5x6, x2x4x6, x1x4x6, x1x3x6, x3x4x5, x1x4x5, x1x2x5, x2x3x4, x1x2x3)

24

1

3

6

2

1

5

3

There’s a map of free modules with cokernel R/I∆

R
ξ1=

[
x3x5x6 x2x5x6 x2x4x6 x1x4x6 x1x3x6 x3x4x5 x1x4x5 x1x2x5 x2x3x4 x1x2x3

]
←−− R10

Where R10 has standard basis vectors {ε1, . . . , ε10} sent to the generators of I∆. Note that this is
already a monomial map; nothing changes when we take initial terms. Furthermore, all basis elements of
R10 are sent to monomial multiples of the same (only) basis element of R. So we impose a term order on
R by choosing a total order, such as {ε1 < . . . < ε10}.We can use the result from last class to find minimal
generators for the initial module of the kernel of this map. It will be minimally generated by m · ε2 where
m is a minimal generator of (x3x5x6) : (x2x5x6) = (x3). And m · ε3 where m is a minimal generator of
(x3x5x6, x2x5x6) : (x2x4x6) = (x5). We can keep going like this but I’d prefer to use Macaulay2.

i1 : R = ZZ/101[x_1..x_6]

o1 = R

o1 : PolynomialRing

i2 : I = ideal(x_3*x_5*x_6,x_2*x_5*x_6,x_2*x_4*x_6,x_1*x_4*x_6,x_1*x_3*x_6,
x_3*x_4*x_5,x_1*x_4*x_5,x_1*x_2*x_5,x_2*x_3*x_4,x_1*x_2*x_3)

o2 = ideal (x x x , x x x , x x x , x x x , x x x , x x x , x x x , x x x , x x x , x x x)
3 5 6 2 5 6 2 4 6 1 4 6 1 3 6 3 4 5 1 4 5 1 2 5 2 3 4 1 2 3

o2 : Ideal of R

i3 : toList(1..9) / (i -> (i+1,(ideal (flatten entries gens I)_(toList(0..(i-1))):ideal(I_(i)))))

o3 = {(2, ideal x), (3, ideal x), (4, ideal (x , x x)), (5, ideal (x , x)), (6, ideal x), (7,
3 5 2 3 5 5 4 6

ideal (x , x)), (8, ideal (x , x)), (9, ideal (x , x)), (10, ideal (x , x , x))}

6 3 6 4 6 5 6 5 4

o3 : List

This tells us that in(ker(ϕ)) is minimally generated by the 16 elements

{x3ε2, x5ε3, x2ε4, x3x5ε4, x5ε5, x4ε5, x6ε6, x6ε7, x3ε7, x6ε8, x4ε8, x6ε9, x5ε9, x6ε10, x5ε10, x4ε10}

which we can represent with the matrix

R10

ξ2=

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 x2 x3x5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 x5 x4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x6 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x6 x3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 x6 x4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 x6 x5 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 x6 x5 x4

←−− R16

Where R16 has standard basis {β1, . . . , β16}. As discussed previously, we can define a term order on
R16 which is compatible with the complex we’re building simply by assigning (arbitrary) total orderings
as follows:

{β1}, {β2}, {β3 < β4}, {β5 < β6}, {β7}, {β8 < β9}, {β10 < β11}, {β12 < β13}, {β14 < β15 < β16}.

Once these orders are chosen, we can find the initial module of the kernel of this map by again using
the method described on Monday. This one is small enough to not need Macaulay2. Our generators will
be

any minimal generator of (x2 : x3x5) = (x2) times β4

any minimal generator of (x5 : x4) = (x5) times β6

any minimal generator of (x6 : x3) = (x6) times β9

any minimal generator of (x6 : x4) = (x6) times β11

any minimal generator of (x6 : x5) = (x6) times β13

any minimal generator of (x6 : x5) = (x6) times β15

any minimal generator of (x6, x5 : x4) = (x6, x5) times β16

So our minimal generators are {x2β4, x5β6, x6β9, x6β11, x6β13, x6β15, x6β16, x5β16}. So the next map in
our complex should be

R16

ξ3=

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
x2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 x5 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 x6 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 x6 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 x6 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 x6 0 0
0 0 0 0 0 0 x6 x5

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R8

And if R8 has basis {γ1, . . . , γ8}, the initial submodule of the kernel of this map will be minimally
generated by one element, x6γ8. The map

R8

ξ4=

0
0
0
0
0
0
0
x6

←−−−−−−− R1,

where R1 has basis δ1, is injective. This finishes the computation of the Schreyer frame for I∆:

R1 ξ1
←−− R10 ξ2

←−− R16 ξ3
←−− R8 ξ4

←−− R1

With this very explicit example in hand, our goal is to complete this frame to a Schreyer resolution.
First note that this Schreyer frame is graded, with ε1, . . . , ε10 all having degree 3, βi having degree 4 for all
i except i = 4, since β4, has degree 5. γi has degree 5 for all i except i = 1, since γ1 has degree 6 Finally,
δ1 has degree 6.

We’ll introduce a little bit of notation before proceeding. Let Bi be the monomial basis of the image
of ξi (i.e. the columns of ξi), and let B be the union of all Bi. An element m ∈ B is said to have level i if
m ∈ Bi.

Impose a total order on B as follows: m < n if deg(m) < deg(n) or deg(m) = deg(n) and level(m) >
level(n), or deg(m) = deg(n) and level(m) = level(n) = i and m < n in the monomial ordering Fi−1.

First, compute an irredundant Groebner basis C1 for I∆. Since this is a monomial ideal which is
minimally generated by the 10 cubic monomials above, the generating set we already have for I∆ is an
irredundant Groebner basis. Let Gi be a “partial Groebner basis” for the eventual Schreyer resolution, and
Hi “partial minimal generating sets” for the syzygies (LaScala + Stillman says Hi ⊆ Gi but that doesn’t
seem right?)

Let m be the smallest element in B, which in our example is x3x5x6e1 ∈ R1. Since this element has
level 1, we know there’s some g ∈ G1 with initial term equal to m. In this case, of course, g = x3x5x6 ∈ I∆.
So we add g to G1, since we’re building a Groebner basis for the image of ϕ1 in our eventual resolution,

and we add g to H1 since it’s a “syzygy” (a column of the eventual ϕ1 in the resolution we’re computing).
Now we’re done considering m, so we remove it from B and consider the second-smallest element of B.
This will be x2x5x6e1. The process is the same, we add x2x5x6 to both G1 and to H1. This continues for
the first ten smallest elements of B, which are precisely the monomial basis for the image of ξ1, which all
have level 1. (If we weren’t starting with a monomial ideal, this step would be a bit more interesting: it
would start with the columns of ξ1 and give us a matrix 1×n matrix H1 with entires the actual generators
of the ideal.)

What’s the eleventh smallest element of B? It’s going to be one of the (degree 3) monomial generators
of the image of ξ2, which is a submodule of R10 with term over position up ordering. The smallest element
of B2 is x6ε6. We should be thinking of this as the initial term of a syzygy. To find the full syzygy, consider
the following:

x6ε6 is sent to x3x4x5x6e1 ∈ R1. We have C1 already done (or at least partially done, in general). The
lead (only) monomial of this term is divisible by x3x5x6, which is the monomial coefficient on the image
of ε1. When we use this fact to cancel the lead term of x3x4x5x6e1 while tracking the syzygy, we get

0 = x3x4x5x6e1 − x4ξ1(ε1)

This one step finishes the reduction of x1x2x3x6e1 by G1, and it tells us the syzygy x6ε6 − x4ε1. This
“fills in” the seventh column in the matrix ξ2 with an actual syzygy.

Doing one more example, the next smallest element of B is x6ε7. It is sent by ξ1 to x1x4x5x6e1.
The monomial coefficients is divisible by x1x4x6 = ξ1(ε4). Cancelling this term gives us zero, and a new
complete syzygy x6ε7 − x5ε4, filling in another column in ξ2.

Collecting what we have so far and continuing along, we get

x6ε6 x6ε6 − x4ε1
x6ε7 x6ε7 − x5ε4
x6ε8 x6ε8 − x1ε2
x6ε9 x6ε9 − x3ε3

x6ε10 x6ε10 − x2ε5
x5ε3 x5ε3 − x4ε2
x5ε5 x5ε5 − x1ε1
x5ε9 x5ε9 − x2ε6

x5ε10 x5ε10 − x3ε8
x4ε5 x4ε5 − x3ε4
x4ε8 x4ε8 − x2ε7

x4ε10 x4ε10 − x2ε7
x3ε2 x3ε2 − x2ε1
x3ε7 x3ε7 − x1ε6
x2ε4 x2ε4 − x1ε3

(La Scala + Stillman seemed to indicate that one of these degree 4 columns would give rise to an
element that doesn’t reduce to 0 using G1. That didn’t happen for me. I numbered my triangulation
differently but I don’t see why that would make a difference. In fact, since at this point G1 is a groebner
basis for I∆, shouldn’t any ξ2(b) for b a column of level 2 be in I∆? And therefore will reduce to 0 using
the Groebner bases G1? Very confused.)

Some issues:

i. When you’re doing the reduction for an element b ∈ Bi, you might not have a complete Groebner
basis Gi−1 yet. So it’s possible your reduction of ξi(b) will not reach 0. What do we do in this case?
Why do these

ii. While this algorithm is certainly going to terminate (B is finite), why should we expect it to yield
a free resolution, let alone a Schreyer resolution? Similarly, why are the finished Gi irredundant
Groebner bases?

iii.

16 February 15 - An Algorithm for Computing a Schreyer Resolution

Let R = k[x1, . . . , xn] with a monomial order >, and let M be a finitely-generated R-module which is a
quotient of a free R-module F0, say M = F0/N. Let G1 be an irredundant Groebner basis for N, and let
Ξ• be a Schreyer frame for M . The following algorithm will compute a Schreyer resolution F• for M which
has in(F•) = Ξ•. Gi (initialized to �) will eventually be a Groebner basis for the ith syzygy module of M
(is this right?), and Hi (also initialized to �) will be minimal generators for the syzygies. The details can
be found in [4].

1: procedure Schreyer Resolution
2: Input: M = F0/N, G1, Ξ•.

3: Gi,Hi := �
4: while B , � do
5: b := min B
6: B := B \ {b}
7: i := level b
8: if i = 1 then
9: Choose g ∈ G1 with in(g) = b

10: add g to G1

11: add g to H1

12: else if i > 1 then
13: Reduce the image of b using Ci−1

14: Add the syzygy (successful or not) to Ci

15: if it doesn’t reduce to 0 then
16: Add the remainder to Ci−1

17: Remove the initial term of the remainder from B.
18: else if it does reduce to 0 then
19: Add the reduction to Hi.
20: Output: Gi,Hi for all i.

Example 16.1. Another example, smaller but not monomial this time. Let R = k[x, y, z] and let I =
(x3 + yz2, x2y + y2z). Computing a Groebner basis for I yields

G1 = (g1, g2, g3, g4) = (x2y + y2z, x3 + yz2, xy2z − y2z2, y3z2 + y2z3)

Note things like the expressions you get from S poly reductions (or just S polys in terms of gens):

xg1 − yg2 = g3

yzg1 + (−x − z)g3 = g4

(yz + z2g3 + (−x + z)g4)

turn them into syzygies on these 4 gens of I. How to get syz on the original 2 gens of I?
Say we want to run this algorithm to get a Schreyer resolution for I. We start with our Schreyer frame

:

Ξ• : R

[
x2y x3 xy2z y3z2

]
←−−−−−−−−−−−−−−−−−−−−−−− R4

0 0 0
x 0 0
0 x 0
0 0 x

←−−−−−−−−−− R3

The ordered set B is {x2ye1 < x3e1 < xε2 < xyz2e1 < xε3 < y3z2e1 < xε4}
Make it work. In class Example.

Theorem 16.1. The chain complex F• computed by this algorithm is a Schreyer resolution, and in(F•) =
Ξ•.

Proof: Since the algorithm just adds smaller terms to the columns of the matrices in Ξ•, when we take
initial terms we’ll just get Ξ• back.

Exactness?
We know that C1 is an irredundant Groebner basis for N, which is the image of ϕ1 and hence the kernel

of ϕ0, because of the behavior of the algorithm on elements of level 1. Assume that Ci is an irredundant
Groebner basis for the image of ϕi. We need to prove that in(ker(ϕi+1)) is generated by Ci+1

17 February 18

Buchberger’s criterion gives you a generating set for all syzygies:
Recall the division algorithm for modules: Let R = k[x1, . . . , xn] and let F be a finitely-generated free

R-module with a chosen term order >. For a set G = {g1, . . . , gt } and an element f ∈ F we can always
find an expression

f =
t∑

i=1

figi + r

Where f1, . . . , ft ∈ R, r ∈ F, and

in(f) > in(figi)

for all i, and r is a sum of monomials in F, none of which are in the submodule generated by the initial
terms of the gi. r is called a remainder of f after division by G.

For R, F and G as above, where F has basis {e1, . . . , em}, consider the free R-module mape

F ←− Rt

defined by sending the standard basis element εi to gi. If gi and gj have initial terms that are multiples
of the same e`, then we define

σi j =
in(gj)

gcd(in(gi), in(gj))
εi −

in(gi)
gcd(in(gi), in(gj))

εj

For convenience, we’ll rename these coefficients

σi j = mjiεi − mi jεj

The division algorithm tells us that

σi j = mjiεi − mi jεj =

t∑
k=1

f (i j)
k

gk + hi j .

In the case when the initial terms of gi and gj are multiples of different basis elements of F, we say
that hi j = 0.

There’s a Buchberger criterion for modules, which says that G is a Groebner basis for the submodule
of F that it generates if and only if hi j = 0 for all 1 6 i, j 6 t

Lemma 17.1. Let M be a monomial submodule of F, generated by m1, . . . ,mt , and consider the map

F
ϕ
←− Rt

determined by εi 7→ mi. Then the kernel of this map is generated by

ρi j =
mj

gcd(mi,mj)
εi −

mi

gcd(mi,mj)
εj

for i < j

Proof omitted, for now.

Theorem 17.1. Let R, F be as above and let G = {g1, . . . , gt } be a Groebner basis for M ⊆ F. With the
same map

F
ϕ
←− Rt

as above, for any gi, gj whose initial terms are multiples of the same e`, let

τi j = mjiεi − mi jεj −

t∑
k=1

f (i j)
k

εk

Place the same “term over position up” monomial order on Rt that we’ve talked about before: miεi >

mjεj if in(migi) > in(mjgj), or if they’re equal and i < j.
Then the initial term of τi j is mjiεi and the set {τi j | i < j} is a Groebner basis for the syzygy module

ker(ϕ)

Proof. For any τi j , we know that the initial term can only be mjiεi or mi jεj , by the definition of the term
order on Rt . But since i < j we get that mjiεi is the larger term in τi j .

To prove that the τi j form a Groebner basis, let τ be an arbitrary syzygy in Rt . We need to show that
the initial term of τ is a multiple of the initial term of some τi j . Suppose that

τ =
∑
k

fkεk,

and for any k, let mkεk be the initial term of fkεk . Since these terms can’t cancel with each other
(different ε), the initial term of τ must be niεi for some i. Consider the sum

σ =
∑

n`ε`,

where ` ranges over those indices so that n`in(g`) is a scalar multiple of nk in(gk). All these ` must be
bigger than k.

So this σ is a syzygy on the set in(g`) for ` > i. But by the above lemma, this set is generated by the
ρi j described above, which will be mjiεi − mi jεj , where k ≤ i < j. The generators with εk appearing are
ρk j with k < j. So nk must be in the ideal generated by mk j for j > k.

�

Minimizing a free res.

18 February 20 - Worksheet Day

First, recap and finish the theorem from last time. In what follows, R = k[x1, . . . , xn] with a monomial
order > and F is a free R-module with basis {e1, . . . , em} with its own term order, also called >.

Lemma 18.1. Let M ⊆ F is a monomial submodule of F, generated by

M = 〈m1e`1,m2e`2, . . . ,mte`t 〉,

where each mi is a monomial in R. Let Rt be the free R-module with basis {ε1, . . . , εt }, and let
ϕ : Rt −→ F be defined by εi 7→ mieji .

For each i < j so that `i = `j , let

σi j =
mj

gcd(mi,mj)
εi −

mi

gcd(mi,mj)
εj

Then the kernel of ϕ is generated by these σi j

Theorem 18.1. Let M be a submodule of F and let G = {g1, . . . , gt } ⊆ F be a Groebner basis for M. Let
ϕ : Rt → F be defined by εi 7→ gi. The map ϕ lets us define a term order on Rt , given by

nεp > mεq ⇔ ngp > ngq, or ngp = ngq and p < q.

For any i < j where in(gi) and in(gj) are monomial multiples of the same basis element of F, let

τi j = mjiεi − mi jεj −

t∑
k=1

f (i j)
k

εk

be the syzygy that comes from the reduction of the pair (gi, gj) using G. These τi j form a Groebner
basis for the kernel of ϕ, using the term order on Rt defined above.

Proof. We sketch the a successful proof to make up for the failed proof from last lecture:

i. The initial term of τi j is mjiεi.

ii. For any τ ∈ ker(ϕ), we can show in(τ) = niεi for some i.

iii. Let σ =
∑

npεp be the sum over all p so that innpgp and innigi are multiples of the same basis
element of F. Note that all such p satisfy p > i

iv. σ is a syzygy on in(g1), . . . , in(gt), which by the lemma above is generated by the σi j . This means
that ni is in the ideal generated by mpi for p > i.

v. We conclude that the initial term of τ is in the submodule generated by the initial terms of the τi j ,
hence the τi j form a Groebner basis for ker(ϕ.)

�

19 February 22 - More on Hilbert Functions, Points in Projective Space

19.1 Geometric Information from the Hilbert Function

For X ⊆ Pn
k
, we want to know what the dimension of the ith graded component of I(X) says about X.

Start with an example. Let X ⊆ P2
k
be a set of three points,

X = {(a0, a1, a2), (b0, b1, b2), (c0, c1, c2)}

and suppose we want to know the dimension of the degree 2 component of the ideal IX of polynomials
that vanish on X . Such polynomials are of the form

f = r0x20 + r1x0x1 + r2x21 + r3x0x2 + r4x1x2 + r5x22

If we want to know whether f vanishes on the point (a0, a1, a2), all we do is check whether the dot
product below is zero:

[
a20 a0a1 a21 a0a2 a1a2 a22

]
·

r0
r1
r2
r3
r4
r5

= 0

Similarly, to check whether f vanishes on all of X, we check whether the matrix product below is zero:

a20 a0a1 a21 a0a2 a1a2 a22
b20 b0b1 b21 b0b2 b1b2 b22
c20 c0c1 c21 c0c2 c1c2 c22

 ·

r0
r1
r2
r3
r4
r5

= 0

So, the set of points X determines a linear map R2 → k3, and the kernel of this map is precisely the
polynomials of degree 2 that vanish on X. And this is true in any degree d and for any number of points
n. So (using auspicious notation for the cokernel of this map) we can write a four-term exact sequence of
(finite-dimensional) vector spaces

0 −→ (IX)d −→ Rd
Φd
−−→ kn −→ H1(IX(d)) −→ 0

An example of the values of HF and dimH1(IX(d)) for small d, when X is a set of five points, four of
which lie on a line

d = 0 1 2 3 4 5
HR/I (d) = 1 3 4 5 5 5
dimkH1(IX(d)) = 4 2 1 0 0 0

Goal is to relate the Hilbert function of IX , the vanishing of H1(IX(d)), and the Betti numbers of IX .

20 February 25 - Points in Projective Space, Regularity, Resolutions,
Examples

20.1 Imposed Conditions

Recall, for a set X of n points in Pr
k
, for any degree d we get (after a choice of affine patch) a four-term

sequence

0 −→ (IX)d −→ Rd
Φ
−→d kn −→ H1(IX(d)) −→ 0,

Where Φd is the evaluation map from degree d monomials to function X → k. This sequence tells
us that HR/IX (d) + dim(H1(IX(d))) = n, and note that HR/IX (d) = 0 for d � 0. The rank of Φd is the
difference in dimension betweenthe vector space of polynomials of degree d, namely Rd and the vector
space of degree d polynomials vanishing on X, which is (IX)d. This leads to a natural definition

Definition 20.1. We say that the set of points X imposes m conditions on polynomials of degree d if Φd

has rank m. We say that X imposes independent conditions on polynomials of degree d, if Φd has rank
n = |X |.

Rephrasing the fact that HR/IX (d) = 0 for d � 0 using this definition, we say that for d � 0, the set
X imposes n conditions on polynomials of degree d.

Lemma 20.1. X ⊆ Pr imposes m conditions on polynomials of degree d if and only if X contains a subset
Y of m points so that for any point y in Y there exists a degree d polynomial vanishing on all of Y except
y.

Proof. Since the column space of Φd is m dimensional, we can do column operations to Φd until it has an
m×m identity matrix in the top left corner. Think about how this changes the basis for Rd, and what the
first m basis elements do to the first m points. For the other direction, note that the set of m separating
polynomials get sent to a linearly independent set of vectors under Φd �

Lemma 20.2. If X imposes m < n conditions on polynomials of degree d, then it imposes at least m + 1
conditions on polynomials of degree d + 1.

Proof. Let Y be a set of m points with separating polynomials { f1, . . . , fm}. Choose x ∈ X \ Y to form
Y ∪ {x}, and consider {` · f1, . . . , ` · fm}, where ` is the equation of a line through x that misses Y . That’s
almost a set of separating polynomials, but we need a polynomial of degree d + 1 that vanishes on Y
but not at x. Well, we can show that IY is generated in degree d + 1: for each y ∈ Y , choose r linear
polynomials {`j} that vanish at y. Then the sets of polynomials { fi`j}, for all i, will generate IY . So IY
is generated in degree d + 1. How does this help? Hal’s book says IY is actually generated in degree d.
But this doesn’t seem true: if we take X a set of 3 points in P2, we note that X imposes 2 conditions on
polyomials of degree 1 If we take a subset Y ⊆ X of two points, we see that IY is not generated in degree
1. So what’s going on here?

�

How does this tie in with Hilbert Functions and the four-term sequence from before?

Corollary 20.1. For any degree d for which H1(IX(d)) is not zero, we have

dimH1(IX(d)) > dimH1(IX(d + 1)).

And, for d > |X | − 1, we have H1(IX(d) = 0

Proof. The first inequality follows from the lemma. For the equality, note that H1(IX(0)) = |X | − 1, since
the rank of Φ0 can only be 1. The apply the inequality repeatedly. �

Definition 20.2. For a finitely generated graded R = k[x0, . . . , xn]-module with minimal free resolution

F0 ← F1 ← · · · ← Fn ← Fn+1 ← 0

where

Fi =
⊕

j

R(−ai, j)

the regularity of M is sup(ai, j − i)

Example 20.1. For R = k[x0, x1, x2], consider general polynomials f ∈ R5 and ` ∈ R1, and consider
I = (f , `). Then X = V(I) is the intersection of a quintic and a line, which by Bezout’s Theorem will be a
set of 5 points. The Betti table of such an ideal will be

0 1 2
total: 1 2 1
0: 1 1 .
1: . . .
2: . . .
3: . . .
4: . 1 1

reflecting a resolution of the form

R← R(−1) ⊕ R(−5) ← R(−6)

So IX has regularity 4. If we compute the Hilbert function, we’ll get

d = 0 1 2 3 4 5
HR/IX (d) = 1 2 3 4 5 5

Example 20.2. Let `1, . . . , `10 be 10 general polynomials in R1. Let I be the ideal (`1, `2) ∩ . . . ∩ (`9, `10),
so that V(I) is a set of 10 points in general position. The Betti table of such an ideal will be

0 1 2
total: 1 3 2
0: 1 . .
1: . 1 .
2: . 2 2

reflecting a resolution of the form

R←− R(−2) ⊕ R(−3) ⊕ R(−3) ←− R(−4) ⊕ R(−4).

so that R/I has regularity 2. The Hilbert function of R/I is

d = 0 1 2 3 4 5
HR/IX (d) = 1 3 5 5 5 5

In the preceeding examples, the regularity of R/I was equal to the index of the last row in the Betti
table, and was equal to the first degree d after which the hilbert Function started to agree with the Hilbert
Polynomial. This is not a coincidence, but is something we’ll work towards proving. But some setup is
required first.

21 February 27 - Some background towards (stating and) proving the
theorem

We want to prove that the regularity of a set X of points in projective space controls when the Hilbert
function of X starts agreeing with the Hilbert polynomial. We need some background in order to make
this precise, and to prove it.

Definition 21.1. An R-module P is called projective if, for any surjective map of R-modules M → N,
any map P→ N lifts to a map P→ M making the triangle below commute.

P

M N 0

It is a useful exercise to show that the following conditions are all equivalent:

i. P is projective.

ii. P is a direct summand of a free module.

iii. The functor HomR(P,−) is exact.

iv. Any short exact sequence 0→ A→ B→ P→ 0 is split exact.

Note that if M is a free R-module, then it’s projective, but the converse is not true for a general ring
R. However, when R is a polynomial ring over a field, if P is a finitely generated projective R-module,
then P is free. This is the Quillen-Suslin Theorem, which we are definitely not going to prove in this class.

Definition 21.2. The projective dimension of an R-module M is the smallest integer d so that there
exists an exact sequence

0← M ← P0 ← · · · ← Pd ← 0

By the previous remark, over a polynomial ring the projective dimension of a graded module can be
found by looking at its minimal free resolution. If R is a graded or local ring with maximal ideal m,
after recalling that −⊗R R/m applied to the minimal free resolution just replaces free modules with vector
spaces and replaces the R-linear maps with 0 maps, we can say that

pdim(M) = sup(
{
i | TorRi (M, R/m) , 0

}
Here’s the theorem about regularity:
Cohen-Macaulay

Theorem 21.1. Let M be a finitely-generated graded R = k[x0, . . . , xn]-module, with Hilbert function
HM and Hilbert polynomial PM .

i. For d > reg(M) we have HM (d) = PM (d).

ii. In fact, if pdim(M) = δ, then for d > reg(M) + δ − n we have HM (d) = PM (d).

iii. If X is a set of points in Pn and M = R/IX , then HM (d) = PM (d) if and only if d > reg(M). More
generally, if M is Cohen-Macaulay, then the statement of ii becomes an if and only if.

Proof. Start with the minimal free resolution of M:

0←− M ←−
⊕

j

R(−a0, j) ←−
⊕

j

R(−a1, j) ←− · · · ←−
⊕

j

R(−aδ, j) ←− 0

Recalling 11, the Hilbert function of M (and consequently, the Hilbert polynomial of M) can be
computed as the alternating sum of the Hilbert functions (polynomials) of the free modules in the minimal
free resolution:

HM (d) =
∑
i, j

(−1)i
(
d − ai, j + n

n

)
PM (d) =

∑
i, j

(−1)i
(d − ai, j + n)(d − ai, j + n − 1) · · · (d − ai, j + 1)

n!

For the binomial coefficient

(
d − ai, j + n

n

)
to be equal to the polynomial expression

(d − ai, j + n)(d − ai, j + n − 1) · · · (d − ai, j + 1)

n!

we need that d > ai, j − n. So, assuming d > regM + δ − n, we get that for any ai, j

d > regM + δ − n > ai, j − i + δ − n > ai, j − n.

So if d satisfies this bound, then HM (d) = PM (d), proving (ii). Note that since δ − n is nonnegative by
the Hilbert syzygy theorem 8.3, this proof implies (i) as well.

We have to postpone the proof of iii until we do more setup �

Slight generalization of the koszul complex: for a ring R, consider a sequence of elements f1, . . . , fm.
The Koszul complex on this sequence is the map defined by considering the map of free R-module

R→ Rm

defined by ei 7→ fi. Then let E be the exterior algebra on Rd, and consider the differential ∂ : Ed 7→

Ed−1 defined by

∂(ei1 ∧ . . . ∧ eid) =
d∑
j=1

fjei1 ∧ . . . ∧ êi j ∧ . . . eid

We’ll use K• = K•(f1, . . . , ft) for this complex.
This complex is, in a sense, the most naive attempts at finding syzygies among the fi, syzygies on the

syzygies, and so forth. Like fjei − fiej . Then higher up, things like the image of ei ∧ ej ∧ ek, which is

fiej ∧ ek − fjei ∧ ek + fkei ∧ ej

corresponding to the second syzygy:

fi(fkej − fjek) − fj(fkei − fiek) + fk(fjei − fiej)

Definition 21.3. For a graded R-module M, a sequence f1, . . . , ft of elements of m is called an M-regular
sequence if any of the following equivalent conditions hold:

i. fi is a nonzero divisor on
M

(f1, . . . , fi−1)M
for all i, and

M
(f1, . . . , ft)M

is not zero.

ii. Hi(K•(f1, . . . , ft)) = 0 for i > 1.

iii. Hi(K•(f1, . . . , ft)) = 0 for i = 1.

The depth of M is the maximum length of an M-regular sequence.

22 March 1 - Worksheet Day - Writing your own Macaulay2 functions.

Writing and loading your own Macaulay2 functions: Open a new text file in the editor of your
choice, enter the lines below, and save it as MyFile.m2 (the name is not important, but the .m2 extension
is).

idealOfPoints = (m) -> (
k := ring m;
r := numRows m;
n := numColumns m;

R := k[x_0..x_r];
idealList := apply(n, i -> ideal(toList(x_0..x_(r-1)) - (x_r)*(flatten entries m_i)));

return intersect idealList;
)

Once your files is saved, start a Macaulay2 session and run the commands:

load "/path/to/MyFile.m2"
k = ZZ/101;
m = random(k^3, k^5);
I = idealOfPoints m;

replacing the path as appropriate.

1. Explain what the function idealOfPoints does. What is the precise meaning of the input m, and
what is the output?

2. Random sets are all the same: Add to your Macaulay2 file the following function:

HFPrinter = (n) -> (

)

i. Fill in the function so that HFPrinter(n) prints the first 30 values of the Hilbert Function of
a generic set of n points in P2. (You can use idealOfPoints in your function definition!)

ii. Do some experiments to convince yourself that random matrices will usually give you sets of
points with the same Hilbert function.

iii. Through experimentation, can you guess a formula for the Hilbert function of a generic set of
n points in Pr?

3. Non-generic sets of points: Let R = k[x0, x1, x2] and let I = (f , g) be the ideal generated by
homogeneous polynomials f , g ∈ R3. What is the degree of I, and what is its Hilbert Function?
Compare this to a generic set of the same number of points in P2, and give geometric interpretations
for the differences.

4. Possible Hilbert functions: Let I be the ideal of a set X of 6 points in P2.

i. Give an upper bound for the regularity of I. Can you find a set X so that this bound is met?
What about a lower bound?

ii. find two different sets of 6 points X and X ′ with the same Hilbert function, but where X has no
subsets of 3 collinear points, but X ′ does. As a hint, try looking at cases where HR/IX (2) = 5.

iii. Give an upper bound on the number of different possible Hilbert functions of the set X. How
many different Hilbert functions can you realize with an explicit ideal?

23 March 4 - Regularity, Depth, and Local Cohomology

Last time, we said that the Depth of an R-module M is the largest integer d so that there exists an
M-regular sequence (f1, . . . , fd).

Definition 23.1. For an R-module M, the dimension of M is the Krull dimension of R/ann(M). In other
words, it is the longest r such that there exisst a chain of proper containments of prime ideals

P0 (P1 (· · · (Pr

in R/ann(M)

Definition 23.2. An R-module M is called Cohen-Macaulay if depth(M) = dim(M)

23.1 Local Cohomology

Definition 23.3. Let R be a Noetherian ring and let I ⊆ R be an ideal. For any R-module M, the 0th

local cohomology module H0
I (M) is defined to be

H0
I (M) = {m ∈ M | Inm = 0 for some n > 1}

.
The assignment M 7→ H0

I (M) is a left exact (covariant) functor, which means it has a family of right
derived functors, which we denote by RiH0

I (−) = Hi
I (M), and we call this functor’s value on M the ith local

cohomology module of M

Recall that one definition right derived functors tells use that to “compute” Hi
I (M), we take an injective

resolution of M:

0→ M → Q0 → Q1 → Q2 → · · · ,

apply the functor to the resolution

H0
I (Q

0) → H0
I (Q

1) → H0
I (Q

2) → · · ·

and define Hi
I (M) to be the cohomology of this complex at H0

I (Q
i). This is not a particularly practical

definition. We’ve been working in a situation where projective (in fact free) resolutions are easy to find
and describe, even compute with. The same is rarely true for injective resolutions.

Lemma 23.1. Local cohomology as a limit of Ext modules.
Consider the diagram:

· · · R/In+1 → R/In → · · · → R/I2 → R/I .

Applying ExtiR(−, M), we get

ExtiR(R/I, M) → ExtiR(R/I
2, M) → · · · → ExtiR(R/I

n, M) → ExtiR(R/I
n+1, M) → · · ·

There is a natural isomorphism between the ith local cohomology module of M and the direct limit of
this diagram:

Hi
I (M) ' lim

−→
n

ExtiR(R/I
n, M)

The proof comes from “abstract nonsense”. This new expression for local cohomology tells us that any
m ∈ Hi

I (M) is annihilated by some power of I. This is because local cohomology is a direct limit of Ext
modules, each of which is annihilated by a power of I. Another definition of local cohomology comes from
the Cech complex:

Lemma 23.2. If I = (a1, . . . , at), consider the complex

0→ M →
⊕
16 j6t

Ma j →
⊕

16 j1< j26t

Ma j1a j2
→ · · · →

⊕
16 j1<... js6t

Ma j1 · · ·a js
→ · · · → Ma1a2 · · ·at → 0

where we are using Ma for the localization M ⊗R R[1a], and the differential⊕
16 j1<... js6t

Ma j1 · · ·a js
→

⊕
16 j1<... js+16t

Ma j1 · · ·a js+1

is defined by sending an element m ∈ Ma j1 · · ·a js
to the alternating sum of the images of m in the further

localizations by ak , for k , j1, . . . , js, where the sign is (−1)p, where k gets inserted into the pth spot
ordered tuple (j1, . . . , jp−1, k, jp, js). This complex, denoted Č(a1, . . . , at ; M), is called the Cech complex.
The cohomology of this complex in position i (i = number of localizing elements) is Hi

I (M).

24 March 6

This is just a cursory introduction to local cohomology, but it lets us state a theorem that will be useful
in proving what’s left of the statement of the theorem 21.1, which we recall here

iii. If X is a set of points in Pn, then HM (d) = PM (d) if and only if d > reg(R/IX). More generally, if M
is Cohen-Macaulay, then HM (d) = PM (d) if and only if d > reg(M) + δ − n.

Example 24.1. Let R = k[x0, . . . , xn] and let m be the ideal generated by the variables. Then for i < n+1
we have

Hi
m(R) = 0

Hn+1
m (R) = HomR(R(−n − 1), k)

Proof. Consider the Cech complex, which is Zn+1 graded, and choose a degree α ∈ Zn and look at the
degree α component of the complex. Let J ⊆ {0, . . . , r} be the indices where α is negative. xα is in a
summand R[1

xi1 · · ·xis
] if and only if J ⊆ {i1, . . . , is} (xα might have xis in a “denominator” so you need to

be able to divide by those variables). So we have that in degree α, R[1
xi1 · · · ,xit

] is either 0 or k, depending
on whether J is a subset of {i1, . . . , it }.

So our chain complex in degree α is indexed by subsets of {0, . . . , r} that contain J. That’s the same
as indexing by subsets of {0, . . . , r} \ J. In fact, the complex in degree α is the complex computing the
simplicial homology of the complete simplex on this set.

Anyways, if this makes sense, then the complex in degree α has zero homology (unless the simplex is
empty, α entirely negative, but that can only contribute to Hn+1

m(R)
). So the degree α component of Hn+1

m (R)
is k if and only if α is entirely negative. This agrees with the multigrading on the dual of the canonical
module. �

The theorem that will be useful (but will take some work to prove) is the following relationship between
regularity and local cohomology.

Theorem 24.1. For M a finitely-generated graded R = k[x0, . . . , xn]-module and d an integer, the follow-
ing are equivalent:

i. d > reg(M).

ii. d > max{e | Hi
m(M)e , 0} + i for all i.

iii. d > max{e | H0
m(M)e , 0} and Hi

m(M)d−i+1 = 0 for all i > 0

Proof.

(i ⇒ ii) . Proceed by induction on the projective dimension of M. pdim(M) = 0, then M = ⊕R(−ai) is free,
and its regularity is max{ai}

�

25 March 8

Theorem 25.1. For M a finitely-generated graded R = k[x0, . . . , xn]-module and d an integer, the follow-
ing are equivalent:

i. d > reg(M).

ii. d > max{e | Hi
m(M)e , 0} + i for all i.

iii. d > max{e | H0
m(M)e , 0} and Hi

m(M)d−i+1 = 0 for all i > 0

Proof.

(i) ⇒ (ii) . Proceed by induction on the projective dimension of M.

If pdim(M) = 0, then M =
⊕

j

R(−aj) is free, and its regularity is max{aj}. By Local Duality, we

have that Hi
m(M) = 0 for i < n + 1, and

Hn+1
m (M) =

⊕
d

Homk (HomR(M, R(−n − 1))−d, k) .

Important note: this HomR is the internal Hom in the category of graded R modules with graded
maps, the right adjoint to the tensor product. The degree e component consists of the R-module
maps that increase degree by e, so HomR(M, N)e) is all the degree 0 maps from M to N(−e), or from
M(e) to N. A good way to think about it is, the identity map id : M → M should be degree 0, so
x · id should be degree 1)

So we have

Hn+1
m (M)e = HomR(M, R(−n − 1))e

= HomR(M, R(−n − 1 − e))

= HomR(
⊕

j

R(−aj), R(−n − 1 − e))

=
⊕

j

HomR(R(−aj), R(−n − 1 − e))

=
⊕

j

HomR(R, R(aj − n − 1 − e))

For any degree e, this module is nonzero if and only if max{aj} − n − 1 − e > 0, which means
d > max{aj} > n + 1 + e for all e, so in particular it’s true for the maximum such e. So d >

n + 1 +max{e
�� Hn+1

m (M)}. And since this is the only non-vanishing local cohomology module of M,
(ii) is satisfied.

Now, assume M has projective dimension δ > 0, with minimal free resolution

0← M
ϕ0
←−− F0

ϕ1
←−− F1 ← · · · ← Fδ ← 0

Re-using notation, let F0 =
⊕
j

R(−aj). Consider im(ϕ1), which has minimal free resolution

0← im(ϕ1)
ϕ1
←−− F1

ϕ2
←−− F2 ← · · · ← Fδ ← 0

This tells us two things: That reg(im(ϕ1)) = reg(M) + 1, and that im(ϕ1) has projective dimension
δ−1, so we can apply our induction hypothesis to it. So if d > reg(M), we know d +1 > reg(im(ϕ1)),
and so for any i > 0

d + 1 > i +max{e
�� Hi

m(im(ϕ1))e , 0}

Consider the short exact sequence

0→ im(ϕ1) → F0 → M → 0

This gives rise to a long exact sequence in local cohomology:

0 H0
m(im(ϕ1)) H0

m(F0) H0
m(M)

H1
m(im(ϕ1)) H1

m(F0) H1
m(M)

H2
m(im(ϕ1)) H2

m(F0) H2
m(M)

· · ·

Hn
m(im(ϕ1)) Hn

m(F0) Hn
m(M)

Hn+1
m (im(ϕ1)) Hn+1

m (F0) Hn+1
m (M) 0

But since F0 is free, all of its local cohomology modules vanish, except Hn+1
m (F0), and we know what

this top local cohomology module is (again using local duality). Filling in this long exact sequence
with zeros, we conclude that for i = 0, 1, 2, . . . , n − 1, we have an isomorphism

Hi
m(M) ' Hi+1

m (im(ϕ1))

And at the end of the long exact sequence we get a four-term short exact sequence

0→ Hn
m(M) → Hn+1

m (im(ϕ1)) →
⊕

j

HomR(R(−aj), R(−n − 1)) → Hn+1
m (M) → 0.

We know by induction that for any i > 0 we have

d + 1 > i +max{e
�� Hi(im(ϕ1)) , 0}.

Using the isomorphisms, we can say that for i = 1, 2, 3, . . . , n we have

d + 1 > i +max{e
�� Hi−1

m (M) , 0}.

So subtract 1 from both sides and re-index to say that for i = 0, 1, 2, . . . , n−1 we have what we need:

d > i +max{e
�� Hi

m(M) , 0}

Now we need to prove it for i = n and i = n + 1. Think about the four-term exact sequence

0→ Hn
m(M) → Hn+1

m (im(ϕ1)) →
⊕

j

HomR(R, R(aj − n − 1)) → Hn+1
m (M) → 0.

If

(ii) ⇒ (iii)

�

26 March 18

26.1 Completing the Proof from Last Time:

We finish the missing implication from the theorem from last class. Some claims in the proof require
nontrivial justifications, but these justifications will be suppressed in the interest of expediency.

(iii) ⇒ (i) Assume that d > max{e | H0
m(M)e , 0} and Hi

m(M)d−i+1 = 0 for i > 0. We can assume the field k is
infinite. We need to show d > reg(M).

We’ll proceed by induction on the projective dimension of M . If pdim(M) = 0, then M = ⊕R(−a0, j)
and we have to show that d > a0, j for all j, i.e. that the generators of M all have degree at most
d. We prove this by induction on the dimension of M: If dim(M) = 0, then `(M) < ∞, so M is
annihilated by a power of m. This means M = H0

m(M) and the fact the M has no generators of
degree larger than d follows from the hypothesis.

Now assume dim(M) > 0. Look at the short exact sequence

0→ H0
m(M) → M → M → 0.

If we can show that H0
m(M) and M have no generators of degree greater than d, then we know it’s

true of M as well. By assumption, H0
m(M)e = 0 for e > d, so that’s straightforward. For M, choose

x ∈ R1 an almost-regular element on M, i.e. the kernel of M
·x
−→ M is finite length (the existence of

such an element is why we needed k to be infinite, and even then it still needs further justification).
Then M/xM is d-regular (since M is?) and it has dimension strictly smaller than dim(M). So M/xM
has no generators of degree greater than d. We can draw the same conclusion about M/mM, and by
Nakayama’s lemma, M has no generators of degrees greater than d. From the short exact sequence
above, this shows M has no generators with degree greater than d. So d > a0, j for all j.

Now, if M has positive projective dimension, the same argument above shows that d > a0, j for all
j, but there are more ai, j to check. consider the minimal free resolution of M :

M ← F0 =
⊕

j

R(−a0, j)
φ1
←−− F1 =

⊕
j

R(−a1, j) ← · · · ← Fδ =
⊕

j

R(−aδ, j).

Once again, consider im(ϕ1) and the short exact sequence

0→ im(ϕ1) → F0 → M → 0,

which gives rise to the long exact sequence

0 H0
m(im(ϕ1)) H0

m(F0) H0
m(M)

H1
m(im(ϕ1)) H1

m(F0) H1
m(M)

H2
m(im(ϕ1)) H2

m(F0) H2
m(M)

· · ·

Hn
m(im(ϕ1)) Hn

m(F0) Hn
m(M)

Hn+1
m (im(ϕ1)) Hn+1

m (F0) Hn+1
m (M) 0

This long exact sequence, together with our assumption that M is d-regular, tells use that im(ϕ1)
is d + 1-regular. And as before, we can say reg(im(ϕ1)) 6 reg(M) + 1.. By induction on projective
dimension, we get that d+1 > reg(im(ϕ)). But think about what this means in terms of the minimal
free resolution of M: It means that d + 1 > (ai, j − (i + 1)) for all i > 0 and all j. Combined with the
i = 0 case from earlier, we get that d > reg(M).

26.2 Applications of the theorem:

Let’s use this to prove part (iii.) of 21.1

Proof. Let X be a set of points in Pn, let M = R/IX and let d = reg(M). A geometric argument (the
existence of a line that does not contain any of the points in X) shows that depth(M) > 1 . The dimension
of M is 1, so the depth is 1 too. We have a four-term exact sequence

0→ H0
m(M) → M → H0(M̃) → H1

m(M) → 0.

The first term is zero because the depth of R/IX is positive (?) The global sections H0(M̃) are just the
functions on X in each degree, so

H0(M̃) =
⊕
d

H0(OX(d)),

and since X is affine, the global sections H0(OX(d)) is just kX for each d. Since d = reg(M), the
previous theorem says that d is also equal to 1 + max{e | H1

m(M)e , 0}, which means d is the smallest
integer so that H1

m(M)d = 0. But this is zero if and only if the middle map is an isomorphism, i.e. if and
only if dim(R/IX)d = n. But the degree where the coordinate ring of X because n-dimensional is exact the
degree where the Hilbert function and Hilbert polynomial begin to coincide.

�

27 March 20

It remains to prove that if M is Cohen-Macaulay, then 1 + reg(M) − pdim(M) is the smallest integer so
that the Hilbert function and polynomial agree.

Wrapping up 21.1, let M be a finitely generated R = k[x0, . . . , xn]-module with pdim(M) = δ. We need
to show that HM (d) = PM (d) if and only if d > reg(M) + δ − n. For this we need one lemma:

Lemma 27.1. For M a finitely-generated graded R-module, we have

PM (d) = HM (d) −
∑
i>0

(−1)idimkHi
m(M)d .

Proof. For a sheaf F on projective space, the euler characteristic of F is defined to be

χ(F) =
∑
i>0

(−1)idimkHi(Pn,F).

We claim that the Hilbert polynomial of M is related to the Euler characteristic of M̃ in the following
way:

PM (d) = χ(M̃(d)).

Why is this true? By Serre vanishing, for d � 0, all higher cohomology of M̃(d) is zero, and
H0(Pn, M̃(d)) is just Md. So the equality holds for infinitley many values of d. To get the equality
for all values of d, we just have to show that the right-hand side is a polynomial. We do this by induction
on the dimension of M:

If M is 0-dimensional, then M̃ has 0-dimensional support, and the euler characteristic of M̃ is just
the dimension of the space of global sections. For any sheaf, when you tensor with a vector bundle, euler
characteristic gets multiplied by the rank of the vector bundle. Since M̃(d) is just M̃ ⊗ O(d), the euler
characteristic doesn’t change.

Now suppose M has positive dimension. For a general linear polynomial ` ∈ R1 we get an exact
sequence

0→ M̃(−1)
`
−→ M̃ →�M/xM → 0

which gives a long exact sequence in sheaf cohomology

0 H0(Pn, M̃(−1)) H0(Pn, M̃) H0(Pn,�M/xM)

H1(Pn, M̃(−1)) H1(Pn, M̃) H1(Pn,�M/xM)

H2(Pn, M̃(−1)) H2(Pn, M̃) H2(Pn,�M/xM)

· · ·

Hn(Pn, M̃(−1)) Hn(Pn, M̃) Hn(Pn,�M/xM) 0

The alternating sum of the dimensions of all the terms in this long exact sequence will be 0, which
tells you that χ(M̃) − χ(M̃(−1)) = χ(�M/xM). The right-hand side is a polynomial, because dim(M/xM)
is lower than dim(M). You can repeat this argument for any twist to get

χ(M̃(d)) − χ(M̃(d − 1)) = χ(�M/xM(d))

This means that χ(M̃(d)) is a polynomial in d (why does it mean this? calculus trick?)
By the result from last time, we have a four-term exact sequence

0→ H0
m(M) → M →

⊕
d

H0(Pn, M̃(d)) → H1
m(M) → 0

(possibly not needed here?) as well as isomorphisms for i > 0 :⊕
d

Hi(Pn, M̃(d)) ' Hi+1
m (M)

Note: M determines two sheaves: a sheaf FM on punctured affine space X = An+1 \ {0}, and a sheaf
M̃ on Pn. the relationship between the cohomology of these sheaves is

Hi(X,FM) =
⊕
d

Hi(Pn, M̃(d))

The vertical Cech complex from the lemma that gives the four-term and the isomorphisms computes
the cohomology of FM . But in degree d it computes the cohomology of M̃(d).

The isomorphisms from the lemma let us say that for i > 1,

dimkHi(M̃(d)) = dimkHi+1
m (M)d,

while the four-term sequence (in degree d) tells us that

dimkH0
m(M)d − dimkMd + dimkH0(M̃(d)) − dimkH1

m(M)d = 0

Putting this all together, we have

PM (d) = χ(M̃(d)) =
∑
i>0

(−1)idimkHi(Pn, M̃(d))

= dimkH0(M̃(d)) +
∑
i>1

(−1)idimkHi(M̃(d))

=
(
dim(Md) − dimH0

m(M)d + dimH1
m(M)d

)
+

(∑
i>1

(−1)idimHi+1
m (M)d

)
which after replacing dimMd with HM (d) and re-indexing and simplifying the rest of the expression,

proves what we were trying to show. �

Using this, we get a quick proof of the last bit of 21.1.

Proof. We already know that when d > reg(M)+ δ−n, the Hilbert function and Hilbert polynomial agree.
We need to show that this bound is sharp. The Auslander-Buchsbaum formula tells us that

depth(M) + pdim(M) = depth(R) = n + 1,

so δ = n + 1 − depth(M), which lets us rewrite

reg(M) + δ − n = reg(M) − depth(M) + 1.

Local cohomology Hi
m(M) can only be nonzero when depth(M) 6 i 6 dim(M), and is guaranteed to

be nonzero when i = depth(M) Since M is Cohen-Macaulay, depth(M) = dim(M), so there’s only one
non-vanishing local cohomology is Hdepth(M)

m (M). So by the preceeding lemma we have

PM (d) = HM (d) −
∑
i>0

(−1)idimHi
m(M)d

= HM (d) ± dimHdepth(M)
m (M)d

And by the big theorem from before, we know

reg(M) = max{e | Hdepth(M)
m (M)e} + depth(M),

so reg(M) − depth(M) + 1 is the smallest degree after which the local cohomology module giving the
correction term becomes permanently zero.

�

28 March 22: Loading Packages, Depth in Macaulay2

In addition to the main Macaulay2 system, users can write and load their own packages to accomplish
specific tasks. Some of these packages are bundled with Macaulay2, so are automatically available to you.
But you can also find and use packages that aren’t shipped with the main system, or you can write and
load your own packages.

28.1 Problem 1

Recall that when R = k[x0, . . . , xn], the depth of an R-module M is the length of a maximal M-regular se-
quence, i.e. a sequence r1, . . . , rd of homogeneous elements in R for which the Koszul complex K•(r1, . . . , rd)⊗R
M is exact.

i. Let I = (x, y)∩(z,w) ⊆ k[x, y, z,w]. Through experimentation, try to guess the depth of the R module
M = R/I. Functions you may find useful are:

1. koszul, returns the koszul complex of a 1 × n matrix of ring elements.

2. **, a binary operator for tensor product. Can be used to take the tensor product of two
modules, or of chain complexes, or both.

3. HH, computes the homology of a chain complex. Use HH_i if you want a particular homology
module

4. prune, to simplify the presentation of a module, especially a homology module. For example,
if m = matrix{{x,y,z,w}}, compare the output of HH koszul m to the output of prune HH
koszul m.

ii. Load the Depth package and look at the documentation, using the commands

i1 : loadPackage "Depth"

i2 : help "Depth"

Using the functionality provided by this package, compute the depth of M, and whether or not M
is Cohen-Macaulay.

iii. Find the source code for the Depth package. It will be a file called Depth.m2, probably in ../Macaulay2-1.13/share/Macaulay2/,
but if not, you can use the command path to ask Macaulay2 where it is finding packages. If for
some reason you can’t find it locally, the source code can be found on the Macaulay2 Github page.

Read the source code for the function Depth(Module), and explain how it is calculating depth.

28.2 Problem 2

There are many Macaulay2 packages that may bring its functionality close to your mathematical in-
terest, such as AbstractToricVarieties, Divisor, Graphs, LatticPolytopes, Matroids, Points,
StronglyStableIdeals, ToricTopology, Tropical. Look at these or other packages that look inter-
esting to you, and put some thought into your project for this course.

If you are interested in writing your own Macaulay2 package (by no means required!), you might want
to take a look at PackageTemplate and SimpleDoc in the packages directory for some guidance on how
to get started.

29 Week of March 25 - 29: Simplicial Complexes Worksheet

A simplicial complex on the vertex set V = {1, 2, . . . , n} is a collection of subsets ∆ ⊆ P(V), with the
property that if σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆. The elements of ∆ are called the faces of the simplicial
complex, and the dimension of a face σ is |σ | − 1.

A simplicial complex ∆ determines an ideal in the ring R = k[x1, . . . , xn], called the Stanley-Reisner
ideal of ∆. It is defined to be the ideal I∆ generated by the squarefree monomials corresponding to the
subsets of V that are not faces of ∆. The Stanley-Reisner ring of ∆ is the quotient R/I∆.

29.1 Problem 1

Warm up: Fixing V = {1, 2, . . . , n}, describe the Stanley-Reisner ideal of each simplicial complex below:

i. ∆ = � (The void complex)

ii. ∆ = {�} (The irrelevant complex)

iii. ∆ = {{1}, {2}, . . . , {n}}.

iv. ∆ = P(V) (The (n − 1)-simplex)

v. ∆ = the d-skeleton of the (n − 1)-simplex: The set of all faces of dimension 6 d.

29.2 Problem 2

Let ∆ be a simplicial complex with Stanley Reisner ideal I∆. We can write this ideal using a generating
set, but we can also write it as an intersection of prime monomial ideals:

I∆ =
⋂
??

p?

Where the prime ideals have a nice combinatorial description in terms of ∆. By playing with examples
in Macaulay2, make a conjecture as to what this expression should be. Once you’re empirically convinced
yourself that you know the answer, prove it. (Hints: Use the command primaryDecomposition. Note
that “prime monomial ideal” is a very restrictive condition.)

29.3 Problem 3

A simplicial complex ∆ determines a chain complex of k-vector spaces C̃•(∆), where C̃i(∆) is the k-vector
space with basis the i-dimensional faces of ∆. The differential

∂ : C̃i −→ C̃i−1

is defined by

∂(σ) :=
∑
v∈σ

(−1)ivσ \ {v}

where iv is the position of v among the vertices of σ. C̃•(∆) is called the reduced chain complex of ∆,
and the homology of this chain complex is the reduced homology of ∆ with k coefficients, denoted H̃i(∆, k).
For the non-reduced chain complex and non-reduced homology, we make all the same definitions but
we replace C̃−1(∆) with 0. These complexes are accessible through the SimplicialComplexes package in
Macaulay2

For simplicial complexes ∆1 and ∆2, give combinatorial interpretations of the complexes below. It will
help you to do small examples on paper, and mid-sized examples in Macaulay2.

i. C̃•(∆1) ⊗ C̃•(∆2).

ii. C•(∆1) ⊗ C•(∆2).

There is a relationship between the graded Betti numbers of I∆ and the reduced homology H̃i(∆, k).
Hochster’s formula says that

βi, j(I∆) =
∑
W ⊆V
|W |=j

H̃j−i−2(∆ ∩ P(W), k).

The simplicial complex ∆∩P(W) is called the restriction of ∆ to W . Write a Macaulay2 function that
computes the betti number of I∆ using Hochster’s formula. Do you think your approach is slower or faster
than the built-in algebraic methods? Test it using the timing keyword.

29.4 Problem 4

Hochster’s formula ought to provide an explanation for the existence of ideals whose betti numbers depend
on the characteristic of the field k, and suggest ways to construct them.

i. Find (or remember from class) the triangulation of RP2. In light of Hochster’s formula, predict
which values of char(k) will give different Betti tables for I∆, and verify this using Macaulay2.

ii. Building off the above, find an ideal I ⊆ k[x1, . . . , xn] for which the Betti tables displaying dimkTorri (R/I, k)
can take three different values, depending on the characteristic of k. Bonus points if your ring and
ideal are reasonable enough that Macaulay2 can actually do these computations.

30 Week of April 1: Alexander Duality

30.1 Problem 1

There is a duality for squarefree monomial ideals called Alexander duality, defined as follows: A squarefree
monomial ideal I admits a primary decomposition

I = P1 ∩ P2 ∩ . . . ∩ Pd

where each Pi is generated by a subset of the variables of R. If we define mi to be the product of the
variable generators of Pi, then the Alexander dual of I, denoted I∗, is the ideal

I∗ = 〈m1, . . . ,md〉.

If ∆ is a simplicial complex on the vertex set {1, 2, . . . , n}, then the Alexander dual of ∆, denoted ∆∗, is
the simplicial complex on {1, 2, . . . , n} whose maximal faces are the complements of the minimal subsets
of {1, 2, . . . , n} that are not faces of ∆

i. Convince yourself that Alexander duality “commutes” with taking Stanley-Reisner ideals, i.e. that
for a simplicial complex ∆ we have I∆∗ = (I∆)∗.

ii. Prove that Alexander duality is in fact a duality : That (I∗)∗ = I (equivalently, that (∆∗)∗ = ∆).

iii. What are the Alexander duals of:

a. The void complex.
b. The irrelevant complex.
c. The d-skeleton of the n-simplex
d. The minimal triangulation of RP2 from class.

iv. Give examples of

a. A simplicial complex that is self-dual: ∆ = ∆∗.
b. A simplicial complex that is isomorphic to its dual, but where ∆ , ∆∗.
c. A simplicial complex ∆ that is pure (all maximal faces of ∆ are of the same dimension) for

which ∆∗ is not pure.

30.2 Problem 2

A labeled simplicial complex is a simplicial complex ∆ together with a vertex labeling {1, 2, . . . , n} → Nm,
where we think of vectors in Nm as corresponding to monomials in k[x1, . . . , xm]. Given a labeling on ∆,
we label any higher-dimensional face σ of ∆ with mσ, the least-common multiple of the monomial vertex
labels of that face. A labeled simplicial complex determines a chain complex of free k[x1, . . . , xm]-modules:⊕

σ∈∆
dim(σ)=−1

Reσ
∂
←−

⊕
σ∈∆

dim(σ)=0

Reσ
∂
←−

⊕
σ∈∆

dim(σ)=1

Reσ
∂
←− . . .

∂
←−

⊕
σ∈∆

dim(σ)=i

Reσ
∂
←− . . .

Where the differential is defined for a face σ = {i1, . . . , id} as

∂(eσ) =
d∑
j=1

(−1)j+1
mσ

mσ\{i j }
· eσ\{i j }

i. When ∆ is the complete (n − 1)-simplex on {1, 2, . . . , n} and the vertex labeling is {i} 7→ xi, what is
the free resolution determined by this labeling? Is it exact, and what is it resolving?

ii. Write a Macaulay2 function which takes a simplicial complex ∆ and a vertex labeling {1, 2, . . . , n} →
Nm and returns the resolutions specified above.

iii. Let ∆ be the octahedron, where antipodal vertices are labeled with corresponding variables x0, x1, y0, y1
and z0, z1 for expediency. It has six vertices, twelve edges, and eight 2-dimensional faces. What is
the alexander dual of ∆?
A polyhedral cell complex is a set P of convex polytopes in Rn that is closed under taking inter-
sections, and closed under taking faces. A labeled polyhedral cell complex is defined analagously to
labeled simplicial complex, only now we have to be more careful with signs. If we choose orien-
tations on all faces of P, then the differential ∂(eσ is the sum of ±mσ

mτ
eτ , where τ ranges over the

codimension 1 faces of sigma and the sign is positive if and only if the orientation on τ is induced
by the orientation on σ.

iv. Compare your answer in part iii. to the polar dual of ∆, which has a vertex for each face of ∆, an
edge for each pair of adjacent faces in ∆, and a face for each vertex of ∆. In this case, the polar
dual to the octahedron is a (hollow) cube, which is not a simplicial complex but can be thought of
as a polyhedral cell complex. If you label the vertices of the cube by the monomial labels of the
corresponding faces of ∆, what is the resulting cellular resolution?

30.3 Problem 3

(Challenging) Let ∆ be a simplicial complex with Stanley-Reisner ideal I∆. We say that ∆ is Cohen-
Macaulay if R/I∆ is a Cohen-Macaulay ring.

i. Use Macaulay2 to find examples of Cohen-Macaulay simplicial complexes.

ii. For each Cohen-Macaulay ∆ that you found, look at the Betti table of I∆∗ . Make a conjecture about
the relationship between Cohen-Macaulayness of ∆ and the structure of the minimal free resolution
of I∆∗ .

	January 9 - Monomial Orders and Multivariate Polynomial Division
	Getting Started
	Multivariate Polynomial Division

	January 11 – Groebner Bases and Buchberger's Algorithm
	Groebner Bases
	Buchberger's Algorithm

	January 14 – An Introduction to Macaulay2
	Sample Macaulay2 Session

	January 16 – Introduction to Affine Algebraic Geometry
	Affine Varieties
	Groebner Bases and Elimination Ideals

	January 18 – First Macaulay2 Hands-On Session
	Problem 1
	Problem 2
	Problem 3

	January 23 - R-modules
	January 25 - More on Graded Modules, Minimal Free Resolutions, Betti Numbers
	January 28 - Betti Diagrams, The Koszul Complex for R/m, Proof of Hilbert Syzygy Theorem
	January 30 - Projective Geometry, Hilbert Functions
	February 1 - Worksheet 2
	February 4
	The Hilbert Function, Series, and Polynomial

	February 6 - Algorithms for minimal free resolutions
	More general terms orders:

	February 8
	Schreyer Resolutions and Schreyer Frames

	February 11 - Example of Computing a Schreyer Frame
	February 13 - Example of Computing a Schreyer Resolution
	February 15 - An Algorithm for Computing a Schreyer Resolution
	February 18
	February 20 - Worksheet Day
	February 22 - More on Hilbert Functions, Points in Projective Space
	Geometric Information from the Hilbert Function

	February 25 - Points in Projective Space, Regularity, Resolutions, Examples
	Imposed Conditions

	February 27 - Some background towards (stating and) proving the theorem
	March 1 - Worksheet Day - Writing your own Macaulay2 functions.
	March 4 - Regularity, Depth, and Local Cohomology
	Local Cohomology

	March 6
	March 8
	March 18
	Completing the Proof from Last Time:
	Applications of the theorem:

	March 20
	March 22: Loading Packages, Depth in Macaulay2
	Problem 1
	Problem 2

	Week of March 25 - 29: Simplicial Complexes Worksheet
	Problem 1
	Problem 2
	Problem 3
	Problem 4

	Week of April 1: Alexander Duality
	Problem 1
	Problem 2
	Problem 3

