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Topological Complexity of Graphic Arrangements

Nathan Fieldsteel

Abstract. By combining Yuzvinsky’s criteria from [13] with tools from graph

theory, we obtain an explicit combinatorial condition on a finite graph G which

guarantees that the higher topological complexity TCs of the complement of
the associated graphic arrangement AG is equal to the dimensional upper

bound sr − 1, where r is the rank of AG.

1. Introduction

The topological complexity TC(X) of a space X is an integer which measures
the extent to which any motion planning algorithm for X must be discontinuous.
TC(X) is a special case of the Schwarz genus introduced in [12]. Specifically,
TC(X) is the Schwarz genus of the path fibration

π : XI → X ×X given by π(γ) 7→ (γ(0), γ(1)).

The exact value of the toplogical complexity of a space can be difficult to com-
pute, but its value is of interest for spaces like configuration spaces and their gen-
eralizations; spaces for which explicit motion planning algorithms are often desired
for practical applications. Examples of such spaces include the space of config-
urations of a mechanical system, or the space of configurations of a multi-body
system in a 2 or 3 dimensional space. Higher topological complexities, denoted
TCs(X) for s > 2, were defined in [11] to address algorithms for planning more
complicated motions. Recent work has been done on computing the topological
complexity of hyperplane arrangement complements and other combinatorially de-
termined spaces, for example [1],[4],[5],[6],[14] and [13]. In this paper we focus on
a particular class of hyperplane arrangements called graphic arrangements.

In recent work in [13], Yuzvinsky gives a combinatorial condition on a complex
hyperplane arrangement A which guarantees that the topological complexity of the
arrangement complement is maximized. An arrangement satisfying the condition
defined in [13] is called large. In the case of graphic arrangements, we show that
this condition is equivalent to a strengthened version of the inequality in a theorem
of Nash-Williams which guarantees that the edges of a graph can be decomposed
into two acyclic subgraphs. Our main result is the following.
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Theorem 1.1. Let G = (V,E) be a graph with |V | = r + 1 and no isolated
vertices, and let AG be its associated graphic arrangement. Then AG is large if and
only if G contains a spanning subgraph H having 2r − 1 edges and satisfying that
for every nonempty, non-singleton subset U ⊆ V we have

|EH(U)| < 2(|U | − 1).

Here EH(U) denotes the set of edges of the subgraph of H induced by U . In
particular, if such an H exists, then the higher topological complexity TCs of the
complement of AG is equal to sr − 1.

Before proceeding, we give a quick illustrative example.

Example 1.2. Let A be the arrangement attained by removing one hyperplane
from the arrangement A5. In other words, A is the arrangement in C6 consisting of
the hyperplanes defined by the 14 equations {x1− x2, x1− x3, x1− x4, x1− x5, x1−
x6, x2 − x3, x2 − x4, x2 − x5, x2 − x6, x3 − x4, x3 − x5, x3 − x6, x4 − x5, x4 − x6}.
This arrangement is the graphic arrangement associated to the graph attained by
deleting one edge from the complete graph K6.
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It is shown in [13] that the topological complexity of the complement of the
A5 arrangement is 5s − 1. The topological complexity TCs(A) of the complement
of the arrangement attained by deleting one hyperplane is at most 5s − 1, but it
may be lower. If we can find a full rank subarrangement A′ with TCs(A′) = 5s −
1, then we can conclude that TCs(A) = 5s − 1 as well. Such a subarrangement
would correspond to a subgraph H which satisfies the theorem above. Let A′ be the
subarrangement determined by the subgraph H shown below.
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It is easy to confirm that for any non-empty, non-singleton subset U of the
vertex set of H, the subgraph induced by U has strictly fewer than 2(|U | − 1) edges.
Applying the theorem above lets us conclude that TCs(A) = TCs(A′) = 5s− 1.

2. Hyperplane Arrangements

We begin by establishing the terminology and results we will need for our
discussion of hyperplane arrangements. Additional background and details can be
found in [10].

Definition 2.1. A hyperplane arrangement A is a finite set {H1, . . . ,Hn} of
codimension 1 linear subspaces of a complex affine space Cr.

An arrangement A is called central if the intersection H1 ∩ H2 ∩ . . . ∩ Hn is
nonempty, and essential if the intersection contains exactly one point. When we
refer to the combinatorics of the arrangement, we mean the patially ordered set
of all intersections of subsets of A, ordered by reverse inclusion. This is called the
intersection lattice of A. When we refer to the topology of the arrangement, we
mean the topology of its complement

MA = Cr \
n⋃

i=1

Hi.

A subset {Hi1 , . . . ,Hit} of t hyperplanes of A is called independent if the inter-
section Hi1 ∩Hi2 ∩ . . .∩Hit has codimension t, and is called dependent otherwise.
It turns out that the cohomology of MA is determined by the combinatorial data
of the arrangement.

Theorem 2.2 (Orlik, Solomon [9]). Let EA be the exterior algebra with gener-
ators {e1, . . . , en} in natural correspondence with the hyperplanes in A, and let IA
be the ideal in EA given by

〈
t∑

j=1

(−1)jei1 ∧ . . . ∧ êij ∧ . . . ∧ eit | {Hi1 , . . . ,Hit} is a dependent set in A〉.

IA is called the Orlik-Solomon ideal of A, and the Orlik-Solomon algebra of
A, denoted A(A), is the quotient of EA by IA. The Orlik-Solomon algebra is
isomorphic to the cohomology of the complement: H∗(MA,C) ∼= A(A).

Any linear ordering 4 of the hyperplanes in A determines a basis for A(A),
called the no-broken-circuit basis. A circuit in A is a minimal dependent set of
hyperplanes, and a broken circuit is a circuit with its minimal (with respect to 4)
hyperplane removed. A subset of A is called no-broken-circuit or nbc if it does not
contain a broken circuit.

The monomials in EA are naturally identified with subsets of A. For any choice
of linear ordering 4, the images of the nbc monomials in A(A) form a C-basis for
the Orlik-Solomon algebra, called the nbc basis for that ordering.

3. Topological Complexity and Motion Planning

Let X be a topological space and suppose we are interested in the motion
planning problem for X [3]: given any two points a and b in X we would like a
path γ : I → X starting at a and ending at b. We would like this assignment of
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paths to be continuous in a and b, but this is only possible when X is a contractible
space. So instead we seek a collection of local assignments of paths to pairs. If we
let π : XI → X ×X be the path fibration of X, defined by π(γ) = (γ(0), γ(1)), we
are led to the following definition, which first appeared in [2].

Definition 3.1. A motion planning algorithm for X, or simply a motion
planner is a finite open cover {U0, . . . , Un} of X×X together with a map si : Ui →
XI satisfying that π ◦ si = idUi

. The open sets Ui are called the local domains of
the motion planner.

If a pair (a, b) is in one local domain, while a nearby pair (a
′
, b

′
) is in a different

local domain, then it is possible that the motion planner will assign very different
paths to these pairs, even if the pairs themselves are very close. For this reason,
in practical applications it is desirable to have a motion planner with as few local
domains as possible. The extent to which this goal can be achieved is measured by
the topological complexity of X.

Definition 3.2. The topological complexity of X, denoted by TC(X), is the
smallest integer n such that there exists a motion planner for X with n + 1 local
domains {U0, . . . , Un}.

Note that we are using the reduced version of topological complexity; a space
for which a motion planner exists with a single local domain would have topological
complexity 0. Higher topological complexity, generalizing the notions given above,
was defined in [11]. In the above definitions, replace X×X with the s-fold product
of X, and replace the path fibration with

πs : XI → X ×X × . . .×X︸ ︷︷ ︸
s times

defined by evaluation at s points in I:

πs(γ) := (γ(0), γ(
1

s− 1
), γ(

2

s− 1
), . . . , γ(

s− 2

s− 1
), γ(1))

Higher topological complexity TCs(X) is one less than the number of open
subsets needed to cover the base X ×X × . . .×X so that on each open subset, πs
admits a continuous section. When s = 2, this recovers the definition of TC given
above. Before we proceed, we state a few useful properties of TCs which we will
use in later sections.

Proposition 3.3 ([13]).

(1) TCs(X) is an invariant of the homotopy type of X [2].
(2) If X has homotopy dimension r, TCs(X) ≤ sr.
(3) In the case where X is the complement of an arrangement of hyperplanes

in Cr, we have that TCs(X) ≤ sr − 1.
(4) There is a lower bound for TCs(X), given by the higher zero-divisors-cup-

length:

zcls(X) ≤ TCs(X).

This lower bound zcls(X) is called the sth zero-divisors-cup-length of X. It is
computed in terms of the multiplication structure of H∗(X;C). More precisely, if
we let Ks denote the kernel of the cup product map
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H∗(X;C)⊗H∗(X;C)⊗ . . .⊗H∗(X;C)︸ ︷︷ ︸
s times

→ H∗(X;C),

then the sth zero-divisors cup length of X, denoted zcls(X), is the largest integer
z so that the ideal Kz

s is non-zero.

4. Large Arrangements

For general spaces, it can be very difficult to compute the exact value of
TCs(X). The main technique for proving that a space has a certain topological
complexity is to explicitly construct a motion planner for it having a number of lo-
cal domains greater by one than the cohomological lower bound. This is extremely
difficult for complicated spaces. Of course, if the cohomological lower bound is
equal to the dimensional upper bound, then the value of TCs(X) is also equal to
that upper bound.

In what follows, A will denote an essential arrangement of complex hyperplanes
in Cr. By abuse of notation, we will interchangeably useA to refer to the hyperplane
arrangement or its complement. In [13], Yuzvinsky gives a combinatorial condition
on A which guarantees that the cohomological lower bound and the dimensional
upper bound for TCs(A) are equal. We recall the relevant definitions here.

Definition 4.1. A pair (B,C) of subsets of A is called a basic pair if there
exists a linear order 4 on the set of hyperplanes such that the following conditions
are met:

(1) B and C are disjoint.
(2) B is maximal nbc (meaning that |B| = r) for the order 4.
(3) C is nbc for the order 4.

An arrangement A is called large if it admits a basic pair with |C| = r − 1.

Our result for graphic arrangements is proven by leveraging the result in [13]
which states that large arrangements have maximal topological complexity.

Proposition 4.2 ([13]). If A contains a basic pair with |C| = r − 1 then
zcls(X) = sr − 1 and hence TCs(X) = sr − 1.

5. Graphic Arrangements

The condition in Proposition 4.2, when satisfied, gives the topological complex-
ity of any essential hyperplane arrangement. We are interested in applying it to the
case of graphic arrangements, a class of arrangements which has overlap with re-
flection arrangements and Coxeter arrangements, and which has very well-behaved
combinatorics.

Definition 5.1. Let G = (V,E) be a finite graph with vertices {v1, . . . , vr+1}.
Consider a complex affine space Cr+1 with coordinates {x1, . . . , xr+1}, and for any
edge (vi, vj) ∈ E let Hij denote the hyperplane in Cr+1 defined by xi−xj = 0. The
graphic arrangement associated to G is given by {Hij |(vi, vj) ∈ E}.

If G is a connected graph, then the intersection of all of the He is 1-dimensional.
By projecting to the orthogonal complement of this subspace, we see that the com-
plement of A is homotopy equivalent to the complement of an essential arrangement
in Cr with the same combinatorics as AG. Since TCs is a homotopy invariant, the
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topological complexity of this essential arrangement will be the same as the topo-
logical complexity of AG.

5.1. When is a graphic arrangement large? The topological complexity
TCs(AG) is at most sr − 1, with equality guaranteed when AG is a large arrange-
ment. So we would like a combinatorial condition on G which is equivalent to the
condition that AG is large. To find such a condition, we should first formulate
Definition 4.1 for the graphic arrangement case.

A set of hyperplanes in AG is independent if and only if the corresponding
subset S of the edge set of G is acyclic. Furthermore, for a given linear order 4 on
E, an independent set of hyperplanes in AG in nbc if and only if the corresponding
subset S of the edge set of G is acyclic and for any path P in S and any edge e
not in S such that {e} ∪ P is a cycle, e is not the minimal element of {e} ∪ P with
respect to 4. For brevity, we will use nbc to refer to subsets of the edge set of G
which correspond to nbc subsets of AG.

Using this, we can rephrase the condition that AG is large in terms of the
underlying graph as follows

Proposition 5.2. When G is a connected graph, there exists a basic pair (B,C)
in AG if and only if there exists a pair (T, F ) of disjoint subsets of E, and a linear
ordering 4 on E, satisfying the following.

(1) T is a spanning tree for G.
(2) F is a disjoint union of at least two trees.
(3) If P is a path in T and e is an edge in F such that P ∪{e} forms a cycle,

then e is not the minimal element of that cycle with respect to 4.
(4) If P is a path in F and e is an edge in T such that P ∪{e} forms a cycle,

then e is not the minimal element of that cycle with respect to 4.

It is immediate that AG is a large arrangement if and only if there exists a pair
(T, F ) and an order 4 as above with |F | = r − 1. In this situation, it must be the
case that F is a disjoint union of exactly two trees, which together form a spanning
subgraph of G.

Example 5.3. Revisiting Example 1.2, if we decompose the edge set of the
subgraph G′ into subsets T and F and choose an ordering on the edges as shown
below.

1

3

2

4

5

T

6

7 8

9

F

This partition (T, F ) of the edge set and ordering of the edges corresponds to
a basic pair (B,C) for the graphic arrangement A′ with |C| = r − 1 = 4. The
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existence of this pair is what guarantees that TCs(A′) = 5s− 1. It is worth noting
that it will not generally be true that the linear ordering is such that all edges in T
are less than all edges in F .

Proposition 5.2 is a reformulation of Definition 4.1 for the graphic arrangement
case. In the above example, we simply found the decomposition and ordering by
hand. But using tools from graph theory, we can obtain a simpler condition on the
graph G which is equivalent to the conditions in Proposition 5.2 being satisfied.

6. Arboricity and a theorem of Nash-Williams

We’ve seen that questions about whether a graphic arrangement is large are
closely related to questions about decomposing finite graph into acyclic subsets,
and this is a well-understood subject. For a finite graph G = (V,E), there is
a smallest integer k such that E can be written as a disjoint union of k acyclic
subsets. This number is called the arboricity of G and is tightly connected to the
density of edges among the vertex-induced subgraphs of G. In particular, a theorem
of Nash-Williams gives us the following.

Theorem 6.1 (Nash-Williams [8]). Let G = (V,E) be a finite graph. For any
subset U ⊆ V , we will use E(U) to denote the edge set of the subgraph induced by
U . The edge set of G can be partitioned into k forests if and only if for all nonempty
U ⊆ V we have

|E(U)| ≤ k(|U | − 1).

This inequality is a condition on the density of the edges of G among the vertex-
induced subgraphs of G. If the edge set of G is a union of a small number of acyclic
subsets, then no vertex-induced subgraph of G can have a high density of edges,
and in fact the reverse is true.

Applying this theorem with k = 2 to graph with r+1 vertices and 2r−1 edges,
we see that when

|E(U)| ≤ 2(|U | − 1)

for all U ⊆ V , not only will the edge set of G be partitioned into two forests, but in
fact one of the two forests will be a spanning tree and the other will be a disjoint
union of exactly two trees. This additional structure is nothing but numerics; it
can’t be the case that both of the forests have fewer than r edges, since G has a
total of 2r − 1 edges. And neither forest can have more than r edges, since such
a subgraph would have a cycle. So the only possibility is that one of the forests
has exactly r edges and is a spanning tree, and the other has r − 1 edges and is
a forest composed of exactly two trees. These two subsets are naturally the pair
(T, F ) which form a candidate for a basic pair for the arrangement AG. But we
don’t yet know whether there exists the necessary linear order 4 on the edge set.
For an example of why G having arboricity 2 is not sufficient to guarantee that AG

is large, consider the complete graph K4 with one additional vertex and pendant
edge shown below. For all subsets of its vertex set, it satisfies the Nash-Williams
inequality, so it can be partitioned into a spanning tree T (dotted edges) and a
forest F composed of exactly two trees (solid edges). Note that one of the trees in
F is just an isolated vertex.

However, T and F cannot form a basic pair. To see this, let 4 be any linear
ordering on the edges of this graph. If we restrict our attention to the K4 subgraph,
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we see that every dotted edge can be completed to a cycle by a path of solid edges.
And every solid edge can be completed to a cycle by a path of dotted edges. This
means that no matter which edge in the K4 is minimal with respect to 4, it will
force one of either T or F to fail to be nbc.

If we let U be the vertex set of the K4, we see that it satisfied the Nash-Williams
inequality with equality, i.e. 6 = |E(U)| = 2(|U | − 1) = 2(4 − 1). In what follows,
we will show that such subsets are the only obstruction to the existence of a linear
ordering 4 with the needed properties.

7. Result

Our main result is that strengthening the inequality in the Nash-Williams the-
orem guarantees the existence of the desired linear order, and so guarantees that
AG is a large arrangement.

Theorem 7.1. Let G = (V,E) be a graph with |V | = r + 1 and no isolated
vertices, and let AG be its associated graphic arrangement. Then AG is large if and
only if G contains a spanning subgraph H having 2r − 1 edges and satisfying that
for every nonempty, non-singleton U ⊆ V we have

|EH(U)| < 2(|U | − 1),

where EH(U) denotes the set of edges of the subgraph of H induced by U . In
particular, if this inequality is satisfied, then the higher topological complexity TCs

of the complement of AG is equal to sr − 1.

In order to prove this Theorem, we will make use of the following technical
lemma. This is a translation of theorem 4.1 from [13] into the language of graphs .

Lemma 7.2. Let H = (V,E) be a graph with |EH(U)| < 2(|U | − 1) for all
nonempty, non-singleton U ⊆ V , and suppose that E can be written as a union
of disjoint subsets T and F , where T is a spanning tree and F is a proper forest.
Then there exists a linear ordering 4 of E so that

(1) If P is a path in T and e is an edge in F such that P ∪{e} forms a cycle,
then e is not the minimal element of that cycle with respect to 4.

(2) If P is a path in F and e is an edge in T such that P ∪{e} forms a cycle,
then e is not the minimal element of that cycle with respect to 4.

Proof. We will prove this lemma by induction on |V |. It is vacuously true
when |V | = 1.

If |V | > 1, then the disjoint trees in F partition V into disjoint subsets
V1, . . . , Vk with k ≥ 2. Let Ei denote EH(Vi). Since T is a spanning tree, there
must be at least one edge connecting a vertex in Vi to a vertex in Vj for some i 6= j.
We let E0 denote the set of all such edges, so that
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E0 = E \
k⋃

i=1

Ei,

and E is the disjoint union E0 ∪E1 ∪ . . .∪Ek. We will denote by Hi the graph
(Vi, Ei). In this way, H can be seen as a disjoint union of at least 2 vertex-induced
subgraphs H1, . . . ,Hk, represented here as grey boxes, connected by the edges of
E0.

H1 = (V1, E1)

H2

H3

H4

We will construct the linear ordering 4 on E by giving an order on each Ei,
then concatenating these orderings so that when i < j, all edges in Ei are less that
all edges in Ej .

First, let e be an edge in E0 and let P be any path in F . Since e connects two
disjoint subtrees of F , {e} ∪ P does not form a cycle. For this reason, the edges
of E0 can be chosen to be minimal among the edges of E without introducing any
broken circuits. The ordering of E0 itself can be chosen arbitrarily.

Now consider Ei for i ≥ 1. The graph Hi satisfies that |EHi
(U)| < 2(|U | − 1)

for all nonempty, non-singleton U ⊆ Vi. F ∩Ei is a spanning tree for Hi by design,
and T ∩ Ei is a forest. We see immediately that T ∩ Ei must be a proper forest,
because if it were a spanning tree, then we would have |EHi

(Vi)| = 2(|Vi| − 1), a
contradiction. Since Hi has strictly fewer vertices than H, we know by induction
that there is a linear ordering 4 on Ei so that the following two conditions are met.

(1) If P is a path in F ∩Ei and e is an edge in T ∩Ei such that P ∪{e} forms
a cycle, then e is not the minimal element of that cycle with respect to 4.

(2) If P is a path in T ∩Ei and e is an edge in F ∩Ei such that P ∪{e} forms
a cycle, then e is not the minimal element of that cycle with respect to 4.

Let 4 be the linear ordering of E defined by concatenating the arbitrary or-
dering of E0 with the orderings of the Ei as described above. All that remains is
to verify that the ordering 4 satisfies the necessary conditions.

Let P be a path in T and suppose that e is an edge in F so that P ∪ {e} is a
cycle. If P ∩ E0 is nonempty, then e cannot be the minimal element of that cycle
by construction. If P ∩E0 is empty, then P is contained in Hi for some 1 ≤ i ≤ k,
so e must also be an edge in Hi, so by induction e is not the minimal element of
the cycle.
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Similarly, let P be a path in F and let e be an edge in T so that P ∪ {e} is a
cycle. P must be a path in Hi for some 1 ≤ i ≤ k, which means e must be an edge
in Hi and so is not the minimal edge of the cycle by induction.

�

With the above lemma in place, we now proceed to the proof of the theorem.

Proof. Since any arrangement which contains a large subarrangement is it-
self large [13], it is enough to show that the graphic arrangement AH is a large
arrangement.
AH is large if and only if it contains a basic pair (B,C), which is equivalent to

the existence of a pair (T, F ) and a linear order 4 as described in Proposition 5.2.
Suppose |E(U)| < 2(|U | − 1) for all U ⊆ V . By Nash-Williams, we know that

the edge set of H can be written as a disjoint untion of two forests T and F . As
mentioned above, we can assume that T is a spanning tree and |F | = r − 1, and
so F is a disjoint union of exactly two trees. Since F is a proper forest, the above
lemma guarantees the existence of a linear order 4 on E so that (T, F ) forms a
basic pair, so AH is a large arrangement and TCs(AH) = sr − 1.

For the reverse implication, Let G be a graph satisfying that for each spanning
subgraph H with 2r−1 edges, there is at least one nonempty, non-singleton subset
U ⊆ V for which the above strict inequality does not hold. We will show that the
edges of H cannot form a basic pair, and so G cannot be large. If H is such a
subgraph and U satisfies |EH(U)| > 2(|U | − 1), then by Nash-Williams the edges
of H can’t be decomposed into two acyclic subsets and so cannot correspond to a
basic pair in AG. Next suppose H is a subgraph so that |EH(U)| ≤ 2(|U | − 1) for
all nonempty, non-singleton subsets U , but with at least one subset U satisfying
|EH(U)| = 2(|U |−1). We will show that there cannot exist a linear ordering on the
edges of H satisfying the needed conditions. Let H ′ be the subgraph of H induced
by U . By Nash-Williams, the edge set of H ′ will decompose into a disjoint union
of two forests. Since |H ′| = 2(|U |−1), both of these forests must be spanning trees
of H ′, call them T1 and T2. For an arbitrary edge e in T1, there exists a path in
T2 which is completed to a cycle by e. So e cannot be the minimal edge of H ′. By
symmetry, we can make the same argument about an arbitrary edge in T2. So no
linear ordering of the edges of H ′ can satisfy the conditions of Proposition 5.2, and
so the edges of H cannot form a basic pair for AG.

�

8. Applications

We close with some examples of graphs that determine large graphic arrange-
ments.

Example 8.1. Let A be the graphic arrangement associated to the complete
tripartite graph Kr−1,1,1. The arrangement A is large and TCs(A) = sr − 1.

Proof. Let v1 and v2 be the vertices of the singleton parts, and let U be a
nonempty, non-singleton subset of the vertex set. If neither v1 nor v2 are in U ,
then |E(U)| = 0 < 2(|U | − 1). If exactly one of the v1 or v2 is in U , then |E(U)| =
|U |−1 < 2(|U |)−1. If both v1 and v2 are in U , then |E(U)| = 2(|U |−2) < 2(|U |−1).
So AG is large. �
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Figure 1. The arrangement AG associated to the complete tri-
partite graph G = K8,1,1 has TCs(AG) = 9s− 1.

Example 8.2. Let G be the wheel graph Wr+1, that is the graph join of the sin-
gleton graph with an r-cycle. The graphic arrangement AG is large and TC(AG) =
sr − 1.

Proof. Let v denote the central vertex of G and let H be the subgraph ob-
tained by deleting one edge which is not incident to v. Let U be a nonempty,
non-singleton subset of the vertex set. If v is not in U , then |EH(U)| ≤ |U | − 1 <
2(|U |−1). If v is in U , then |EH(U)| ≤ (|U |−2)+(|U |−1) = 2|U |−3 < 2(|U |−1).
So the edges of H form a basic pair in AG. �

Figure 2. The arrangement AG associated to the wheel graph
G = W9 has TCs(AG) = 8s− 1.

Example 8.3. Let G be any graph with r vertices for which AG is large, and
let v1 and v2 be two distinct vertices in G. Let G′ be the graph formed by adding
a new vertex v′ to G which is adjacent only to v1 and v2. Then AG′ is large and
TCs(AG′) = sr − 1.

Proof. Let H be the spanning subgraph of G satisfying theorem 7.1 and let
H ′ be the spanning subgraph of G′ formed by adding v′ and both its incident edges
to H. Let U be a subset of the vertex set of G′. If v′ is not in U , then by assumption
|EH′(U)| < 2(|U |−1). If v′ is in U , then by assumption |EH′(U \{v′})| < 2(|U |−2),
and so |EH′(U)| = |EH′(U \ {v′})|+ 2 < 2(|U | − 2) + 2 = 2(|U | − 1). So the edges
of H ′ will form a basic pair for G′ and hence AG′ is large. �

Since the graphic arrangement associated to K3 is easily seen to be large, and
since both Kr−1,1,1 and wheel graphs with a deleted edge can be built by iteratively
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applying the above construction to K3, the above example gives a second proof that
the above graphs determined large graphic arrangements.

Example 8.4. Let G be the graph obtained by inserting a diagonal edge into
each square of an n × 1 grid graph Pn × P1 as shown below. Since G can be built
by iteratively applying the construction from example 8.3 to K3, AG is large and
hence TCs(AG) = s(2n− 1)− 1.

Figure 3. Because this 10-vertex graph G can be built by the
iterative constrution in example 8.3, the associated arrangement
has TCs(AG) = 9s− 1.
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6. J. González, B. Gutiérrez, and S. Yuzvinsky. The higher topological complexity of subcom-

plexes of products of spheres—and related polyhedral product spaces. ArXiv e-prints, January

2015.
7. C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. J. London Math.

Soc., 36:445–450, 1961.

8. C. St. J. A. Nash-Williams. Decomposition of finite graphs into forests. J. London Math. Soc.,
39:12, 1964.

9. Peter Orlik and Louis Solomon. Combinatorics and topology of complements of hyperplanes.
Inventiones mathematicae, 56:167–190, 1980.

10. Peter Orlik and Hiroaki Terao. Arrangements of hyperplanes, volume 300 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].

Springer-Verlag, Berlin, 1992.
11. Yuli B. Rudyak. On higher analogs of topological complexity. Topology Appl., 157(5):916–920,

2010.
12. A. S. Švarc. The genus of a fiber space. Dokl. Akad. Nauk SSSR (N.S.), 119:219–222, 1958.

13. S. Yuzvinsky. Higher topological complexity of Artin type groups. ArXiv e-prints, November
2014.

14. Sergey Yuzvinsky. Topological complexity of generic hyperplane complements. In Topology

and robotics, volume 438 of Contemp. Math., pages 115–119. Amer. Math. Soc., Providence,

RI, 2007.

Fieldsteel: Mathematics Department, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA

E-mail address: fieldst2@math.uiuc.edu


	1. Introduction
	2. Hyperplane Arrangements
	3. Topological Complexity and Motion Planning
	4. Large Arrangements
	5. Graphic Arrangements
	6. Arboricity and a theorem of Nash-Williams
	7. Result
	8. Applications
	References

